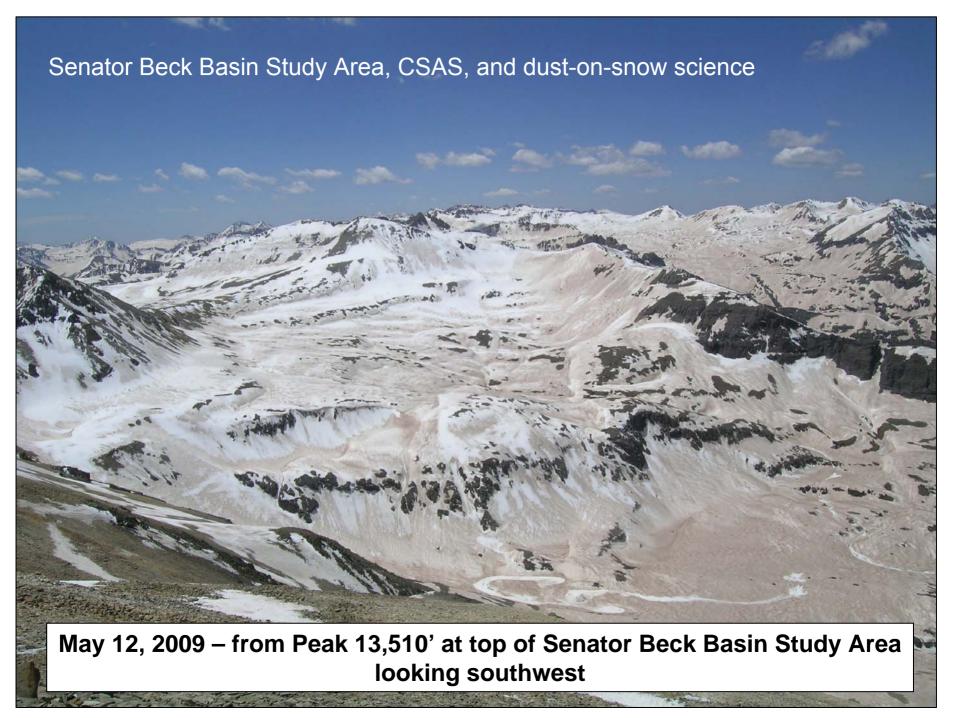
Research and Monitoring

Mountain System Processes and Change

Senator Beck Basin Study Area

Chris Landry

Center for Snow and Avalanche Studies Silverton, CO


Senator Beck Basin Study Area – Sentry Site for Upper CRB

CRB Water Supply & Demand Study: Tech Report B - pg's B7 & B13

CRB Water Supply & Demand Study: Tech Report B - pg B14

Senator Beck Basin: March and April 2009 Dust Layers

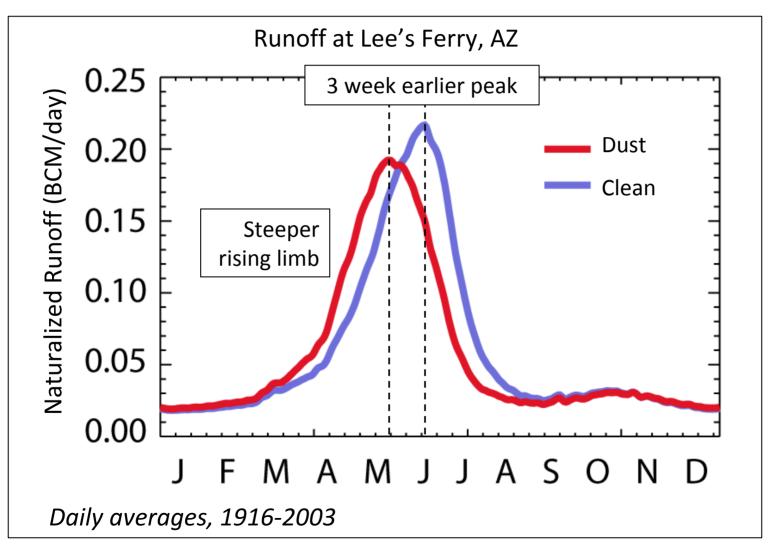
SASP – April 22, 2009

SBSP – April 24, 2009

Large-Scale Albedo Reductions

Senator Beck Basin Hourly Discharge

WY 2006, 2007, 2008 & 2009, 2010, 2011, 2012



USGS 08220000 RIO GRANDE NEAR DEL NORTE, CO.

Dust-on-Snow Shifts Upper CRB Hydrograph*

*not including 2009, 2010 dust deposition rates

At the scale of the Upper CRB, modeling shows:

DOS = Earlier SAG = Increased ET = Reduced Runoff

- Mean Δ Runoff:
 - -4.9%
 - -811,000 acre-ft
- Range:
 - -2.3 to -7.6%
 - -243k to -1,460k acre-ft

^{*}based on pre-2009 dust loading

Besides dust,

SBB is a Sentry Site

for changes in Upper CRB:

- Snowmelt Runoff
- Mountain Precip
- Mountain Temps
- Mountain Winds
- Mountain Radiation
- Mountain Vegetation
- Mountain Soils

CRB Water Supply & Demand Study: Tech Report B - pg B58

FIGURE B- 41 Mean Projected Percent Change in April 1 SWE and July 1 Soil Moisture 2025 (2011–2040) versus 1985 (1971–2000); 2055 (2041–2070) versus 1985 (1971–2000); and 2080 (2066–2095) versus 1985 (1971–2000). 2025 2055 2080 SWE (%∆) 2055 2025 2080 Soil Moisture (%D)

CRB Water Supply & Demand Study: Tech Report B - pg B59

SASP Instrumentation

6 m Mast

CR10X Dataloggers (2), Multiplexer (1)

ETI Precipitation Gauge

Wind Speed & Direction (2)

Air Temp and RH (2)

Barometric Pressure

Height of Snow

Broadband SW (2 up, 1 down, shadow array)

NIR SW (1 up, 1 down)

Pyrgeometer (1 up)

Infrared Snow Surface Temp

Snow Temperature (5)

Soil Temperature (4)

Soil Volumetric Water Content

Soil Heat Flux

Height of Snow - Swamp Angel Study Plot as of 2400 hours

Water Year Cumulative Precipitation at End of Month Swamp Angel Study Plot - Senator Beck Basin Study Area at Red Mountain Pass

SBSP Instrumentation

10 m Mast

Campbell CR10X Dataloggers (2), Multiplexer (1)

Wind Speed & Direction (2)

Air Temp and RH (2)

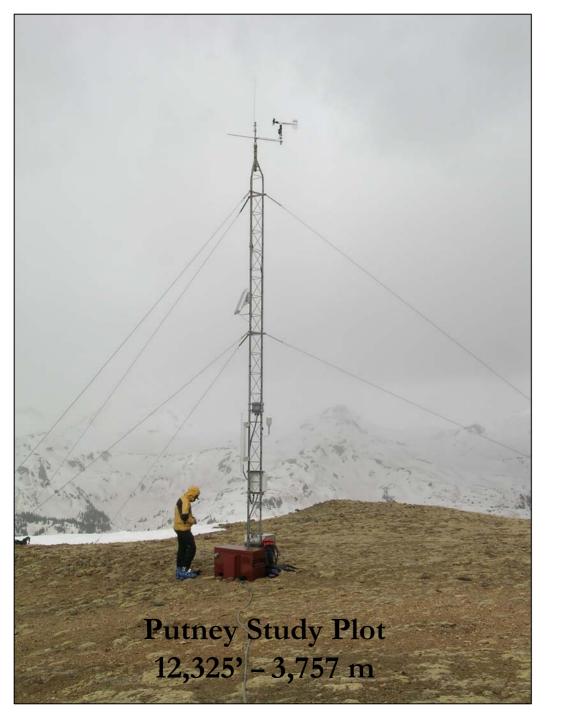
Height of Snow

Broadband SW (2 up, 1 down, shadow array)

NIR SW (1 up, 1 down)

Pyrgeometer (1 up)

Infrared Snow Surface Temp


Snow Temperature (5)

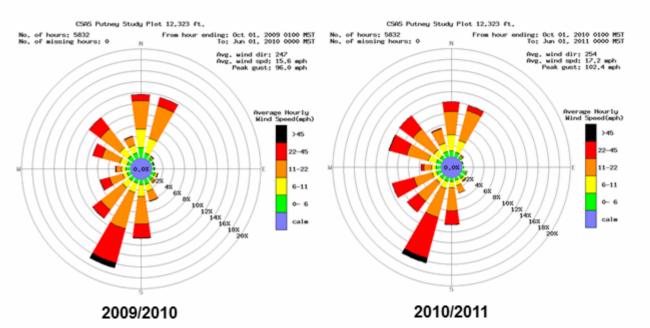
Soil Temperature (4)

Soil Volumetric Water Content

Soil Heat Flux

Snow Profile Plot

PTSP Instrumentation


10 m Mast Campbell CR10X Datalogger Wind Speed & Direction Air Temp and RH

Total Miles of Wind at PTSP by Season

PTSP Winter Wind Roses (10/1 – 5/31)

Putney Study Plot 24-Hour Mean Air Temperatures Elevation 12,325'

Senator Beck Basin Cumulative Discharge - 2006 to 2012

as measured at Senator Beck Stream Gauge (SBSG)

Mountain System Monitoring

Monitoring the plant community as a bellwether for regional climate 'state' in 5-year repeat studies

Vegetation Change =

- Change in Snowcover,
- Change in ET,
- Change in Albedo,
- Change in Runoff

snowstudies.org/data1.html

Silverton Weather - ... SBBSA Forecast St SmartyTask Projects 👩 Evernote 🔞 Google Calendar S NWS Grand Junctio... 🐡 WSC Water Sust 싮 NRCS RedMtn Snotel 🔇 xbox kinnect test M Gmail Inbox

Home

Data •

News & Pubs ▼

Programs ▼

Facilities ▼

Friends, Funders & Partners -

About Us ▼

CSAS ARCHIVAL DATA FROM SENATOR BECK BASIN

Before using any of the following data, you must agree to the <u>policies governing use of CSAS data</u>. Please contact <u>kbuck@snowstudies.org</u> for assistance in working with CSAS data and in interpreting radiation/energy budget data from Swamp Angel Study Plot. Click links below for access to data, metadata and snow profile sets.

	Swamp Angel Study Plot	Senator Beck Study Plot	Putney Study Plot	Senator Beck Stream Gauge
Summer 2011	<u>Data</u> (Excel 3.4 Mb)	<u>Data</u> (Excel 3.6 Mb)	<u>Data</u> (Excel 1.5 MB)	<u>Data</u> (Excel 3.5 MB)
	Metadata (MS Word)	Metadata (MS Word)	Metadata (MS Word)	Metadata (MS Word)
	Data (Excel 12.3 Mb)	<u>Data</u> (Excel 12.8 Mb)	<u>Data</u> (Excel 3.7 Mb)	
Winter 2010/2011	Metadata (MS Word)	Metadata (MS Word)	Metadata (MS Word)	

Snow Profiles (pdf) 25 pits in Senator Beck Basin during the '10-'11 season

Consultation & Antonior Standard (made)

Home

Data 🔻

News & Pubs

Programs -

Facilities 🔻

Friends, Funders & Partners •

About Us ▼

CSAS-ASSISTED SCHOLARLY PUBLICATIONS

Naud, C. M., J. R. Miller, and C. Landry (2012), <u>Using satellites to investigate the sensitivity of longwave downward</u> radiation to water vapor at high elevations, *J. Geophys. Res.*, 117, D05101, doi:10.1029/2011JD016917.

Marshall, H.P., C. Pielmeier, S. Havens, and F. Techel (2010), Slope-scale Snowpack Stability Derived from Multiple Snowmicropen Measurements and High-resolution Terrestrial FMCW Radar Surveys. *Proceedings of the 2010 International Snow Science Workshop*, Squaw Valley, California.

Simonson, S.E., E. Greene, S. Fasnacht, T. Stohlgren and C. Landry (2010) Practical Methods for Using Vegetation Patterns to Estimate Avalanche Frequency Magnitude. *Proceedings of the 2010 International Snow Science Workshop*, Squaw Valley, California.

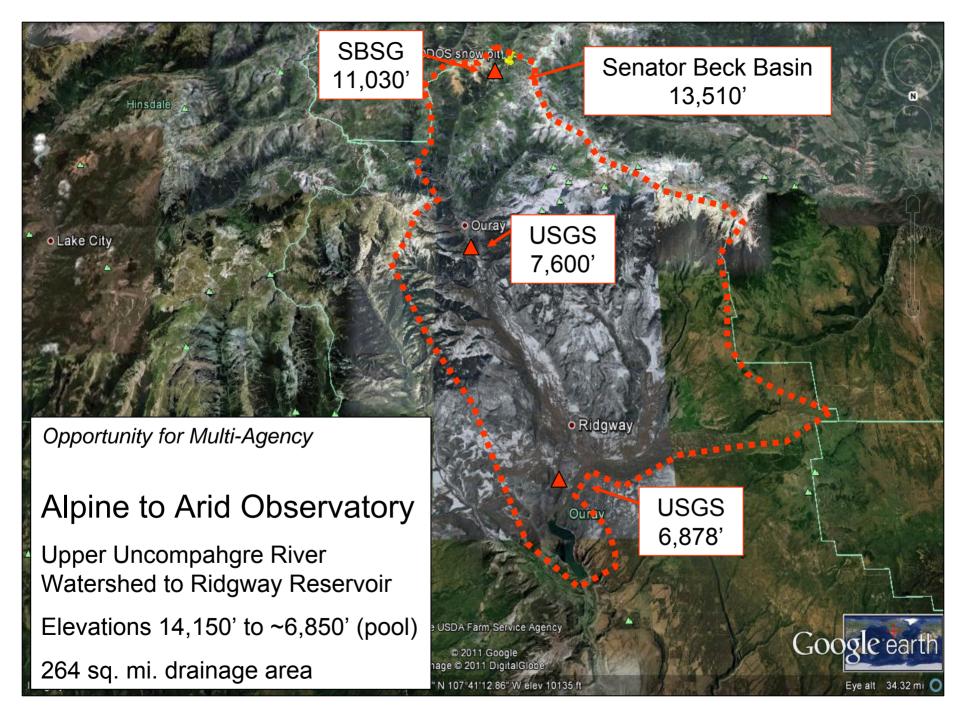
Painter, T. H., J. Deems, J. Belnap, A. Hamlet, C. C. Landry, and B. Udall (2010), <u>Response of Colorado River runoff to dust radiative forcing in snow</u>, *Proceedings of the National Academy of Sciences*, published ahead of print September 20, 2010,doi:10.1073/pnas.0913139107.

Lawrence, C. R., T. H. Painter, C. C. Landry, and J. C. Neff (2010), <u>Contemporary geochemical composition and flux of aeolian dust to the San Juan Mountains</u>, <u>Colorado</u>, <u>United States</u>, <u>Journal of Geophysical Research</u>, 115, G03007, doi:10.1029/2009JG001077.

Steltzer, H., C. Landry, T. H. Painter, J. Anderson, and E. Ayres. 2009. <u>Biological consequences of earlier snowmelt from desert dust deposition in alpine landscapes</u>. *Proceedings of the National Academy of Sciences*. 106: 11629-

Eli Deeb – Army CRREL: Lidar and Microstructure

Martyn Clark – NCAR: CHPS development


Michael Follum – ACE Vicksburg: snowmelt model

Marty Ralph – NOAA ESRL: atmospheric rivers

Painter & Deems – JPL and WWA: radiative forcing

Climate Change in Mountains

Center for Snow & Avalanche Studies

PO Box 190, Silverton, CO 81433

Phone: (970) 387-5080 Email: clandry@snowstudies.org

Web: www.snowstudies.org