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Purpose 

Research was conducted to investigate relationships between tree growth and hydro-climate 

variables. This research was initiated in response to concerns that recent and future changes in 

climate may stress subalpine trees leading to weakened defensive capacity and greater 

susceptibility to outbreaks of native bark beetles. Specifically, there is special concern about 

outbreaks of native spruce bark beetle populations and the role that temperature, precipitation and 

snow-melt timing play in making trees susceptible to beetle attack.   

Introduction 

In recent years, trends of decreased snowpack accompanied by increased melt rate have been 

observed in the San Juan Mountains. These changes in the total volume and melt rate have been 

attributed to drier winters, warmer springtime temperatures and increased occurrence of “dust-on-

snow” events (DOS) which occur when wind-driven dust originating from the desert Southwest is 

deposited on top of, or along with mountain snows. During DOS events, dust particles darken the 

otherwise reflective snow surface, decreasing its albedo and increasing the ratio of absorbed to 

reflected radiative energy. Though the mechanism by which DOS influences snowmelt is simple, 

the significance of particular DOS events is complicated by factors such as slope angle, aspect, 

terrain and vegetation shading, temperature and winds which interact with albedo-related forcing. 

The (indirect) effects of DOS on ecological communities and processes are also subject to the 

influence of topography (Steltzer et al. 2009), weather and shading.  

This research in this report explores the influence of climo-hydrologic factors on a single 

component of a high elevation system, specifically, the health of treeline forests. Radial growth is 

used as a proxy for tree health. Variables relating to climate (precipitation, temperature), 

hydrography (snow-water equivalent, timing and rate of snow melt), forest stand structure 

(canopy closure), and tree-level dominance (canopy strata position) are used to the variability of 

radial growth within the study area. Two types of modeling approaches were used to explore 

linear and non-linear relationships in the data: linear models and random-forest prediction 

methods. 

Methods 

Sampling strategy 
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All sampling was done within the Senator Beck Basin (SBB) near Red Mountain Pass in the San 

Juan Mountains, CO (USA) operated by the Center for Snow and Avalanche Studies based in 

nearby Silverton. Our goal was to obtain samples from trees that show annual variations in radial 

growth related to snowpack variation and associated moisture stress. I sought to stratify sampling 

based on theory and experimental findings which suggest DOS effects might be greatest in areas 

with greater sun exposure. Half of the sampling (n = 63 trees) was conducted in heavily forested 

north-facing slopes and the other half (n = 58) on sparsely forested south-facing slopes.  

Site selection 

Eleven total sites were sampled within the study area. Samples were collected from trees on sites 

with relatively thin, rocky substrate in what appeared to be well-drained locations. Sites also had 

to have a minimum of 5 trees. Because forest cover on the southerly slopes was sparse, trees had 

to be sampled from numerous sites (n = 8) located in distinct clusters of trees. In contrast, 

moisture-sensitive sites were uncommon on north-facing slopes and as a result trees were 

sampled from only three sites.  

Response variable – annual radial growth 

The response variable data are measurements of annual radial growth (mm) collected from a total 

of 124 trees across 11 sites throughout the SBB. Two cores were extracted from opposite sides of 

each bole at knee to chest height. Increment core samples were then processed in a lab using 

standard dendrochronology techniques (Stokes and Smiley 1968). Because all samples were from 

live trees with a complete annual ring for the 2013 growth season dating individual series was 

straightforward and statistical cross-dating was unnecessary. However, I visually crossdated 

samples using identified marker years. No missing rings were identified in any of the samples. 

All samples were scanned to a digital image at 1200 dots per inch and then annual ring-widths 

during the period 1980-2013 were measured using ImageJ image analysis software (Abràmoff et 

al. 2004).  

Most cores were extracted from chest height (50-90 cm) though small tree size, bole damage and 

wood rot required that some be extracted from as low as 15 cm and as high as 140 cm. While 

analyses revealed weak but statistically significant relationships between absolute ring width and 

core height magnitude (Figure 1; r2 = 0.01, p-value = 0.03) and variance (r2 = 0.03; p.value = 

0.008), other variables such as tree diameter (Figure 1; r
2
 = 0.15; p.value < 0.001) and crown 

position (Figure 1; r
2
 = 0.30; p.value < 0.001) were found to correlate more strongly with ring 

width. Furthermore, when ring width was modeled using all three of these variables, core height 

was no longer a significant predictor of ring width ( p.value = 0.48 ). I find no reason to believe 

that the variation in coring heights among our samples is responsible for trends in the ring width 

data.  
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Figure 1 -Radial growth (year 1985 shown as an example) as a function of increment coring height (a), tree 

diameter (b), and canopy strata (c). Data shown are from 248 cores from 124 Engelmann spruce trees near 

treeline in the Senator Beck Basin, San Juan Mountains, CO. The relationship between ring width and core 

height is relatively weak with a large amount of unexplained variance. Canopy strata classes are as follows: 

canopy dominant (cd); canopy sub-dominant (cs); sub-canopy (sc). These categories indicate the relative position 

of each tree in the local forest structure. 
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Figure 2 - The relationship between core height and ring-width series standard deviation (a), mean sensitivity 

(b), and first-order autocorrelation (c). Data shown are from 248 cores from 124 Engelmann spruce trees near 

treeline in the Senator Beck Basin, San Juan Mountains, CO. All relationships involving core height are 

relatively weak with a large amount of unexplained variance. 

Independent variables 
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Stand structure and tree position  

Figure 2 - The relationship between core height and ring-width series standard deviation (a), mean sensitivity 

(b), and first-order autocorrelation (c). Data shown are from 248 cores from 124 Engelmann spruce trees near 

treeline in the Senator Beck Basin, San Juan Mountains, CO. All relationships involving core height are 

relatively weak with a large amount of unexplained variance. 

Independent variables 

Stand structure and tree position 

Forest cover within the SBB is highly variable in terms of stand age, density, structure and 

canopy cover. Though aging stands and calculating canopy cover were beyond the scope of this 

study, I attempted to account for differences in forest structure and position using two 

subjectively measured categorical variables: canopy structure and canopy position. I visually 

assessed and recorded the forest canopy structure surround each tree using the following 

classification: 

  



 

Table 1 - Forest canopy structure classification used in this study. See 

Canopy Structure 

Totally closed canopy (TCC)

Partially closed canopy (PCC)

Lower closed canopy (LCC)

Open canopy (OC)

 

Figure 3 - Illustration showing canopy structure classifications used in this study. For a description see 

We also visually subjectively classified 

surrounding forest canopy using the following 
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Forest canopy structure classification used in this study. See Figure 3 for illustration. 

Description 

(TCC) 

Only canopy dominant trees receive full sun exposure. 

Tall, dominant overstory trees are close to one another 

with significant touching and overlap. This forest casts 

significant shade on sub-dominant and sub

(PCC) 

Canopy dominant trees receive full sun. Sub

and sub-canopy trees receive partial to limited full sun 

exposure. Same as TCC (above), but with fewer dominant 

overstory tree canopies touching. Significant gaps in the 

overstory allow direct light to reach both sub

and sub-canopy trees.  

(LCC) 

Canopy dominant trees receive full sun. Sub

trees receive limited full sun exposure. Sub

are shaded. Same as PCC (above), but with a dense layer 

of canopy sub-dominant trees that shade sub

(OC) Trees of all sizes receive full sun for much of each day. 

 

Illustration showing canopy structure classifications used in this study. For a description see 

also visually subjectively classified the position of each sampled tree’s crown within the 

canopy using the following classification: 

 

Only canopy dominant trees receive full sun exposure. 

Tall, dominant overstory trees are close to one another 

overlap. This forest casts 

dominant and sub-canopy trees. 

Canopy dominant trees receive full sun. Sub-dominants 

limited full sun 

but with fewer dominant 

overstory tree canopies touching. Significant gaps in the 

overstory allow direct light to reach both sub-dominant 

Canopy dominant trees receive full sun. Sub-dominant 

limited full sun exposure. Sub-canopy trees 

are shaded. Same as PCC (above), but with a dense layer 

dominant trees that shade sub-canopy trees. 

Trees of all sizes receive full sun for much of each day.  

Illustration showing canopy structure classifications used in this study. For a description see Table 1.  

within the 



 

Table 2 - Tree crown position classification used in this study. See 

Crown Position 

Canopy dominant 

(CD) 

Canopy sub-dominant

(CS) 

Sub-canopy 

(SC) 

 

Figure 4 - Illustration showing crown position classes used in this study. Classes include canopy dominant (CD), 

canopy sub-dominant (CS), and sub-

Hydro-climate variables

We compiled monthly temperature, precipitation and annual snow water equivalent data for water 

years 1980-2013. Water years are defined as the period October 

following year. Annual radial growth typically begins late

The SBB is home to two heavily

stations. However, the data for these stations begins in 200

for a robust analysis using tree ring data

Conservation Science site # 713) 

the annual snow water equivalent data f

data portal (http://www.wcc.nrcs.usda.gov//

monthly statistics would have had to be compiled

missing data. A far easier approach was to obtain temperature and precipitation data from 

spatially and temporally complete

uses algorithms to interpolate temper

topography using data from nearby weather stations, including SNOTEL stations

the SBB were extracted from the PRISM website using the following coordinates: Longitude = 

107.71007, Latitude = 37.90754

Angel station are very similar in magnitude
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Tree crown position classification used in this study. See Figure 4 for illustration. 

Description 

The largest, tallest trees in the stand that 

receive full sun all day with limited shading 

from surrounding trees  

dominant Trees whose crowns are positioned within a 

secondary canopy strata and that receive 

partial shading from canopy dominants 

Smaller trees whose crowns are positioned 

below canopy sub-dominants and receive 

significant shading from surrounding forest.

Illustration showing crown position classes used in this study. Classes include canopy dominant (CD), 

-canopy (SC) trees. For a description see Table 2. 

variables 

We compiled monthly temperature, precipitation and annual snow water equivalent data for water 

2013. Water years are defined as the period October through September of the 

following year. Annual radial growth typically begins late-spring and ends late-summer.

heavily-instrumented weather and snow-hydrology measurement 

. However, the data for these stations begins in 2005, which is not a long enough record 

using tree ring data. A nearby SNOTEL station (National Resource 

Conservation Science site # 713) on Red Mountain Pass has records extending back to 1980

the annual snow water equivalent data from this station was easily obtained using the SNOTEL 

http://www.wcc.nrcs.usda.gov//). However, for temperature and precipitation,

monthly statistics would have had to be compiled from the raw dataset which is complicated by

A far easier approach was to obtain temperature and precipitation data from 

spatially and temporally complete PRISM datasets (http://www.prism.oregonstate.edu/

temperature and precipitation across topographically complex 

using data from nearby weather stations, including SNOTEL stations. Data 

the PRISM website using the following coordinates: Longitude = 

ude = 37.90754. Monthly precipitation data from PRISM and the SBB Swamp 

in magnitude (Figure 5; Pearson’s r
2
 = 0.93).  

receive full sun all day with limited shading 

Trees whose crowns are positioned within a 

nding forest. 

 

Illustration showing crown position classes used in this study. Classes include canopy dominant (CD), 

We compiled monthly temperature, precipitation and annual snow water equivalent data for water 

through September of the 

summer. 

hydrology measurement 

5, which is not a long enough record 

(National Resource 

back to 1980 and 

rom this station was easily obtained using the SNOTEL 

). However, for temperature and precipitation, 

is complicated by 

A far easier approach was to obtain temperature and precipitation data from the 

http://www.prism.oregonstate.edu/) which 

and precipitation across topographically complex 

Data covering 

the PRISM website using the following coordinates: Longitude = -

data from PRISM and the SBB Swamp 
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Figure 5 - Precipitation time series data for the Senator Beck Basin Study area, CO. Data from the interpolated 

PRISM climate dataset (green) and the station-based data from the Swamp Angel weather station (red) 

operated by the Center for Snow and Avalanche Studies are shown. These two data sets are strongly correlated 

(Pearson r2 = 0.93). 

 

Dust-on-snow data 

Techniques to study the deposition of dust onto snowpack and related effects on snowpack albedo 

are rapidly evolving and improving. The Colorado Dust-on-Snow program (CODOS) of the 

Center for Snow and Avalanche Studies began rigorous dust-on-snow monitoring with the 

establishment of the Senator Beck Basin Study Area in 2003.  Since the winter of 2003/2004, 91 

separate dust events have been documented at SBB (CODOS, 2014).  Although that period of 

record coincides with regional increases in dust deposition (Brahney et al, 2013), no prior dust-

on-snow monitoring preceded CODOS, limiting our ability to assess the impact of such events on 

forest conditions at SBB.  Nonetheless, this decade-long period of increasing dust-on-snow 

frequency and intensity at SBB has substantially altered the timing and rates of snowmelt with the 

general effect of accelerating the loss of snowcover, as compared to the modeled loss of 

snowcover in the absence of dust in the snowpack (Skiles et al, 2012).  

In the absence  of a longer period of record of DOS and albedo data, I used metrics associated 

with snowpack and DOS effects to discern the influence of snowpack quantity and melt timing on 

annual radial growth in trees.  

Table 3 - Snowpack water-year descriptive metrics used in this study 

Canopy Type Description 

Maximum water year SWE 

(swemx_in) 

The maximum snow-water equivalent in inches  

Date of maximum SWE 

(swemx_doy) 

The ordinal date (range: 1-365) during which swemx_in occurred. 

Snow all gone date 

(sag_doy) 

The ordinal date that SWE was measured as zero for the first time during 

the water year. 

Melt period 

(melt_per) 

The number of days between the date of maximum SWE and the snow-all-

gone date. Calculated as: 

melt_per = sag_doy - swemx_doy 
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Specifically, I calculated the melt period and snow-all-gone date and then attempted to model 

these variables using other hydroclimatic variables (eg. temperature, precipitation, peak SWE 

date) as predictors. The residual error from these models should include the influence of DOS on 

snowmelt. I used Random Forest models to explore the importance of predictor variables and fit 

variables with non-linear relationships. Linear models were built using backward stepwise 

variable selection and Akaike’s Information Criterion. 

Results & Discussion 

Radial growth and sensitivity of sampled trees 

Mean radial growth 

Radial growth was greatest in canopy dominant trees regardless of the canopy structure of the 

surrounding forest. Radial growth was especially large in forest with an open canopy structure. 

This difference could be due to either the decreased competition in open canopy forest sites or 

because of differences in tree age. Tree-aging and calculations of basal area increment would be 

needed to further elucidate such a difference and was beyond the scope of the present study.  

 

Figure 6 – Boxplots of mean radial growth (y axis) by tree position (x axis) and forest canopy type (panels). 

Boxplots show the mean (dark bar), 2nd and 3rd quartiles (white box) and 1.5 times the interquartile range 

(whiskers). Points are “jittered” for clarity and all points beyond the wiskers are outliers. The four panels group 

data into the following canopy structure classes: lower closed canopy (lcl); open canopy (oc); partially closed 

canopy (pcc); totally closed canopy (tcc). Columns within panels group data according to the canopy position of 

individual trees: canopy dominant (cd); canopy sub-dominant (cs); sub-canopy (sc). 

Tree-ring sensitivity 

Mean sensitivity varied little within and among the open canopy, partially closed canopy, and 

totally closed canopy groups. The lower closed canopy group showed elevated sensitivity among 

canopy sub-dominant and sub-canopy trees, though the sample size for sub-canopy trees is very 

small. Stands with a lower closed canopy structure appeared to be the most densely forests stands, 

though this density was only observed and not quantified in the field. This increased sensitivity 

might be explained by more intense competition in stands with a lower closed canopy and greater 

tree density. 
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Figure 7 – Boxplots showing the distribution of tree-ring sensitivity (y axis) by tree position (x axis) and forest 

canopy type (panels). Boxplot construction and panel and columns groupings are the same as Figure 6. 

Dust on snow metrics 

We hypothesize that DOS events affect forest health through seasonal water availability. Faster 

melting of snowpack might result in more acute and persistent pre-monsoon moisture stress. 

Because many trees exhibit decreased radial growth during years of severe moisture stress, it may 

be possible to find evidence of DOS effects in tree ring series.  

The ideal way to correlate tree growth with DOS effects would be to use a data set that captures 

the true effect of DOS on snowmelt. While significant progress has been made modeling the 

effect of DOS, the available data do not extend far enough backwards in time for robust 

correlation. In the absence of long-term datasets for dust accumulation or snow surface albedo, I 

used the snow-melt period (SMP) and snow-all gone (SAG) date. The metric SMP is  the number 

of days separating the dates of maximum SWE and SAG. The metric SAG is defined as the date 

during which SWE reaches zero for the first time since the date of maximum SWE. With 

increased DOS effects, SAG is expected to occur earlier and SMP expected to be shorter. 

Year-to-year differences in SAG and SMP are not due solely to DOS effects. Other factors such 

as total SWE, timing of peak SWE, cloud cover, temperature and humidity also play roles in the 

melting of snowpack. To better understand the nature and variability of SAG and SMP, I modeled 

them using hydroclimate variables. 

Melt Period 

During the 1981-2013 period, SMP varied between 26 and 67 days, with a mean of 45. The 

distribution of these data shows a skew towards longer periods. 
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Figure 8 - Distribution of the melt period (melt_per) data. These data are derived from metrics of peak SWE 

and snow-all-gone dates acquired from the SNOTEL station #713 on Red Mountain Pass in the San Juan 

Mountains, which is very near the SBB (2 km south of Swamp Angel Study Plot, at similar elevation). 

Specifically, the melt period is difference between the snow-all-gone date and the peak SWE date. Data shown 

are for the 32 water years between 1981- 2013. 

We checked the relationships between snowmelt period and its constituent metrics, peak SWE 

date (swemx_doy) and snow-all-gone date (sag_doy), as well as the max SWE (swemx_in) which 

ought to play an important role in how long it takes for the snowpack to ablate. I found melt 

period (melt_per) to be most strongly correlated with swemx_doy (Figure 9), which explained 

35% of the variance. The melt period is more strongly related to the timing of the SWE peak than 

to either the disappearance of SWE or the total amount of SWE. 
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Figure 9 - Scatter plots showing the snow-melt period (melt_per; y axis) as a function of SWE max day-of-year 

(a), snow all gone day of year (b), and SWE max in inches (c). 

A look at the distribution sag_doy and swemx_doy helps explain this relationship. Whereas the 

snow-all-gone data are strongly unimodal (centered on the first week of June), peak SWE is more 

complex and shows a somewhat bi-modal distribution with (at least) two peaks, one near the first 

week of April and one or two others near late April and early May. Whereas the snow-all-gone 

data has a strong central tendency, the peak SWE date has several central tendencies which may 

be related to recurring weather patterns (wet springs versus dry springs) that perhaps represent the 

influence of atmospheric teleconnections (ENSO, AMO). For the purposes of this study, it was 

sufficient to discover and understand the important role the peak SWE date plays on the melting 

period.  
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Figure 10 – Kernel density plots and histograms showing the data distributions for swemx_doy (a and b) and 

sag_doy (c and d). Ordinal days are presented. Snow-water equivalent data from which these data were derived 

come from the Red Mountain Pass SNOTEL station #713 and are for the 32 water years between 1981-2013. 

Histogram bars are five day intervals. For reference, ordinal days 100, 150, and 200 correspond with April 10th, 

May 30th, and July 19th, respectively 

I continued building the model of melt period by fitting variables to the residual error. I excluded 

the variable sag_doy from further consideration because it along with swemx_doy would result in 

a perfect fit with no unexplained variance because these are the exact data used to derive the melt 

period data. A Random Forest model run of the residuals from this linear model indicate that both 

swemx_in and ppt.05 are important predictors of the residual error from the initial model. These 

two variables also happen to be strongly collinear. Water years with exceptionally high SWE are 

often characterized as having many late-season storms. Furthermore, storms occurring in May 

generally bring very dense snows contributing large additional SWE to the existing snowpack. 

Given the collinearity and underlying meteorologic mechanisms, I chose swemx_in since it 

would capture both the seasonal precipitation along with any May precipitation specifically.  
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Figure 11 - Scatterplot showing the residuals from the original model (melt_per ~ swemx_doy) as a function of 

water year maximum SWE (swemx_in; a) and total May precipitation (ppt.05; b). The strong correlation 

between swemx_in and ppt.05 is also shown (c). 

Backward step-wise variable selection using AIC criteria and a subset of predictors resulted in a 

model with three variables significant at the p < 0.001 level (swemx_doy, swemx_in, ppt.05), two 

at the p < 0.05 level (ppt.06, tmean.06) and one variable significant at the p < 0.1 level (ppt.12p).  
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Table 4 - Model variable subsets for use in stepwise variable selection. 

Variable name Variable description Melt_per sag_doy chron 

Year Represents a trend in the data X X X 

swemx_in Max SWE (in) X X X 

swemx_doy SWE max day-of-year X X X 

sag_doy Snow-all-gone day-of-year   X 

Melt_per Snowmelt period beginning swemx_doy   X 

swemx_in.p Max SWE (in), previous water year   X 

swemx_doy.p SWE max day-of-year, previous water year   X 

sag_doy.p Snow-all-gone day-of-year, previous WY   X 

Melt_per.p Snowmelt period, previous WY   X 

ppt.01p January precipitation, previous calendar year   X 

ppt.02p February precipitation, previous calendar year   X 

ppt.03p March precipitation, previous calendar year   X 

ppt.04p April precipitation, previous calendar year   X 

ppt.05p May precipitation, previous calendar year   X 

ppt.06p June precipitation, previous calendar year   X 

ppt.07p July precipitation, previous calendar year   X 

ppt.08p August precipitation, previous calendar year   X 

ppt.09p September precip., previous calendar year   X 

ppt.10p October precipitation, previous calendar year X X X 

ppt.11p November precip., previous calendar year X X X 

ppt.12p December precip., previous calendar year X X X 

ppt.01 January precipitation, current calendar year X X X 

ppt.02 February precip. X X X 

ppt.03 March precip. X X X 

ppt.04 April precip. X X X 

ppt.05 May precip. X X X 

ppt.06 June precip. X X X 

ppt.07 June precip. X X X 

ppt.08 June precip.   X 

ppt.09 June precip.   X 

tmean.01p January mean temperature, previous cal. year   X 

tmean.02p February mean temperature, previous cal. year   X 

tmean.03p March mean temperature, previous cal. year   X 

tmean.04p April mean temperature, previous cal. year   X 

tmean.05p May mean temperature, previous cal. year   X 

tmean.06p June mean temperature, previous cal. year   X 

tmean.07p June mean temperature, previous cal. year   X 

tmean.08p June mean temperature, previous cal. year   X 

tmean.09p June mean temperature, previous cal. year   X 

tmean.10p June mean temperature, previous cal. year   X 

tmean.11p June mean temperature, previous cal. year   X 

tmean.12p June mean temperature, previous cal. year   X 

tmean.01 January mean temperature, current cal. year X X X 

tmean.02 February mean temperature, current cal. year X X X 

tmean.03 March mean temperature, current cal. year X X X 

tmean.04 April mean temperature, current cal. year X X X 

tmean.05 May mean temperature, current cal. year X X X 

tmean.06 June mean temperature, current cal. year X X X 

tmean.07 June mean temperature, current cal. year X X X 

tmean.08 June mean temperature, current cal. year X X X 

tmean.09 June mean temperature, current cal. year X X X 
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With the explanatory variables standardized (centered about the mean and scaled to one standard 

deviation), the relative strength (coefficient value) of each variable indicates that the peak SWE 

date is roughly twice as important as the peak SWE amount and roughly four times more 

important than June temperature (Table 5).  The negative coefficient from peak SWE day of year 

indicates that a later peak SWE date results in a shorter SMP. The positive coefficients for 

swemx_in and ppt.05 suggests that more SWE and more May precipitation results in a longer 

SMP. In contrast, the negative coefficient for June precipitation on the snowmelt period indicates 

that increased precipitation during June corresponds with shorter snowmelt periods—perhaps due 

to rain on snow effects. December precipitation (previous year, same water year) is also 

negatively associated with SMP, but this relationship is the weakest of the AIC selected variables 

and it is difficult to explain why increased December precipitation should result in a shortened 

SMP.  

Table 5 - Standardized coefficients for the best model describing melt period. 

Variable Coefficient estimate Coef. Std. Error 

swemx_doy -1.000 0.090 

swemx_in 0.518 3.970 

ppt.05 0.359 0.0914 

tmean.06 -0.236 0.104 

ppt.06 -0.212 0.0878 

ppt.12p -0.155 0.0897 

 

Agreement in the direction of the effect of swemx_in and ppt.05 further supports exclusion of the 

variable ppt.05 on grounds of collinearity. In contrast, the opposite relationship between 

swemx_in and ppt.06 suggests that the effect of the later is fundamentally different from that of 

the former and that ppt.06 should be retained in the model, despite collinearity.  

Table 6 - Performance metrics for models describing melt period. Models with lower AIC values are more 

informative (ie. better). 

Model adj. r2 AIC 

swemx_doy, swemx_in, ppt.05, tmean.06, ppt.06, ppt.12p 0.84 195.12 

swemx_doy, swemx_in, ppt.05, ppt.06, tmean.06 0.83 196.72 

swemx_doy, ppt.05, tmean.06, ppt.06, ppt.12p 0.75 208.76 

swemx_doy, swemx_in, tmean.06, ppt.06 0.73 210.93 

 swemx_doy, swemx_in 0.65 216.78 

 

The full, AIC-selected model explains 84% of the variability in the melt period data for the period 

1981-2012 (Figure 12). More parsimonious models (Table 6) excluding collinear variables reduce 

the fit significantly, though they still explain much of the variability. Retaining collinear 

variables, such as swemx_in and ppt.05 could be justified since precipitation falling in May might 

have a disproportionate affect on increasing the length of the melt period and thus deserve greater 

weight in the model not captured by the swemx_in variable alone.  
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Figure 12 - Actual (solid) and modeled (dashed) snowmelt period (SMP) for the study area. The model was fit 

and variables selected using backwards stepwise least squares regression. The final model uses the following 

explanatory variables: swemx_doy, swemx_in, ppt.05, tmean.06, ppt.06, ppt.12p. 

Snow-all-gone 

Because the melt period and snow-all-gone are related metrics, I expect hydroclimatic variables 

explaining either one to be similar. Stepwise regression explaining SAG produced a list of 

important explanatory variables identical to that for SMP. Variable importance in a Random 

Forest model showed important differences. 

  

Figure 13 - Variable importance ranking output from a Random Forest model of snow-all-gone date for Red 

Mountain Pass, CO, USA. Data are from the period 1981-2012 

  

Unlike the model of SMP, no single hydroclimatic variable overwhelmingly explained year-to-

year variability in SAG dates. In fact, the timing of peak SWE (swemx_doy), which was 
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overwhelmingly the most important variable explaining year-to-year variability in SMP, was 

much less important than other hydroclimatic variables in explaining SAG. Variables 

representing mean spring season monthly precipitation and temperatures were generally ranked as 

more important in the Random Forest model for SAG compared with the model of SMP.  

Table 7 - Standardized coefficient estimates for linear model of snow-all-gone date (SAG). 

Variable Coefficient estimate Coef. Std. Error 

swemx_in 0.525 0.132 

ppt.05 0.364 0.093 

tmean.06 -0.240 0.105 

ppt.06 -0.215 0.089 

swemx_doy 0.191 0.091 

ppt.12p -0.157 0.091 

 

The full, AIC-selected model explains 84% of the variability in the snow-all-gone data for the 

period 1981-2012, the same fit as the SMP model. Variable importance rankings and patterns of 

collinearity are also similar. 

 

Figure 14 - Actual and modeled snow-all-gone date for the study area. The model was fit and variables selected 

using backwards stepwise least squares regression. The final model uses the following explanatory variables: 

swemx_doy, swemx_in, ppt.05, tmean.06, ppt.06, ppt.12p 

Relationships between tree growth and hydroclimatic variables 

Models of annual growth in trees as a function of hydroclimatic variables were constructed for all 

trees and for selected crown position and canopy structure subsets. Subsets of trees were selected 

based on importance to outbreak dynamics as well as sensitivity metrics (see Radial growth and 

sensitivity of sampled trees, above).  
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Table 4. In addition, a variable representing unexplained error from the full SMP model SAG model 

(mod7resid) was included. The inclusion of this variable introduces variability in snow-all-gone date not 

explained by the most important hydroclimatic explanatory variables and potentially due to the influence of 

DOS. 

Subset Which trees Why selected 

All trees All trees sampled Whole forest signal is a useful benchmark 

Most sensitive trees Canopy subdominants in 

lower-closed canopy forest 

Trees with greater ring width sensitivity may 

produce clearer hydroclimatic signal. 

Beetle preferred trees Canopy dominants larger than 

40cm dbh 

Trees in this size class are preferred by beetles 

during outbreaks 

 

Table 8 - Model selection matrix. Model types include Random Forest (RF) and linear model (LM). For each 

subset, the rank for each of the ten most important variables are listed. NOTE: Due to bootstrap sampling in RF 

algorithms, slight changes in rank are common and expected when re-run. Linear models were fit using least 

squares regression and variables selection using AIC. Due to the large number of predictors, candidate variables 

in LMs were selected from the following subsets: Snowpack & melt variables, previous WY precipitation, same 

WY precipitation, previous WY temperature, same WY temperature. Variables retained through AIC selection 

with these groups were then passed on to a final model selection. Variable significant codes are: p > 0.1 (NS);  p 

< 0.1 (+);  p < 0.05 (*);  p < 0.001 (**);  p < 0.0001 (***). Variables with no code were removed from the model 

by AIC criteria. NOTE: the variable Year  was included in each of the initial variable subset model selection 

runs to capture the normal trend of decreased growth with increasing age/size. 

           

Subset of trees  No subset, all trees 
Most sensitive  

subset 

Beetle-preferred  

subset 

Model type  RF 
LM - 

initial 

LM - 

Final 
RF 

LM - 

initial 

LM - 

Final 
RF 

LM - 

initial 

LM - 

Final 

Full Model R2
adj = 0.49  0.75 0.44  0.79 .48  0.77 

Snowpack & 

melt variables 
R2

adj =  0.53   0.51   0.64  

 Year 1 ** + 1 +  1 *** ** 

 swemx_in 4   2 *  5   

 swemx_doy     NS     

 sag_doy          

 Melt_per          

 swemx_in.p 2 *** ** 6 *  4 *** *** 

 swemx_doy.p          

 sag_doy.p       10   

 Melt_per.p          

 mod7resid          

 mod7resid.p  NS NS     * NS 

Previous WY 

precipitation 

variables 

  0.44   0.44   0.61  

 Year 1   1   1 NS  

 ppt.01p          

 ppt.02p  **   **   *** * 

 ppt.03p 10 **  4 *** NS  * NS 

 ppt.04p          

 ppt.05p       3   

 ppt.06p  **      **  

 ppt.07p     NS   + + 

 ppt.08p  * +  * **  ** NS 

 ppt.09p  * +  ** *  * * 
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Table 9 - Continued 

           

Subset of trees  No subset, all trees 
Most sensitive  

subset 

Beetle-preferred  

subset 

Model type  RF 
LM - 

initial 

LM - 

Final 
RF 

LM - 

initial 

LM - 

Final 
RF 

LM - 

initial 

LM - 

Final 

Full Model R2
adj = 0.49  0.75 0.44  0.79 .48  0.77 

Same WY 

precipitation 

variables 

  0.44   0.57   0.52  

 Year 1 ***  1 *  1 ***  

 ppt.10p          

 ppt.11p          

 ppt.12p     + **  NS  

 ppt.01  + +     +  

 ppt.02          

 ppt.03    9 +     

 ppt.04  ** *** 10 * **  *  

 ppt.05    8      

 ppt.06 6   3 * *    

 ppt.07          

 ppt.08  +   NS   *  

 ppt.09  + *     * NS 

Previous WY 

temperature 

variables 

  0.40   0.23   0.48  

 Year 1 *  1 **  1 **  

 tmean.01p          

 tmean.02p          

 tmean.03p          

 tmean.04p  +      NS  

 tmean.05p    10      

 tmean.06p 7         

 tmean.07p 3 *     2 *  

 tmean.08p          

 tmean.09p          

           

Same WY 

temperature 

variables 

  0.41   0.49   0.41  

 Year 1   1   1 ***  

 tmean.10p          

 tmean.11p          

 tmean.12p  +   ** +    

 tmean.01  NS      * + 

 tmean.02    5      

 tmean.03 8 * **  ** *** 8   

 tmean.04  * * 7 ** NS    

 tmean.05  NS        

 tmean.06       7   

 tmean.07 9 ** *  ** ** 9   

 tmean.08          

 tmean.09 5      6   

 

Whole forest: no subsetting 

I found no strong relationships between ring width index and variables related to dust-on-snow 

effects. However, the snow-all-gone date for the water year of growth and the water year 

preceding growth showed the strongest correlations (Figure 15, top-left and bottom-left), both of 

which were positive in sign indicating that earlier snow-all-gone dates are associated with 

decreased annual growth.  
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Figure 15 - Scatterplots of ring width index for all trees and hydroclimatic variables related to dust-on-snow 

effects. For variable names, see Table 3 and Table 4. 

The model of annual growth using all trees sampled during the study included 243 ring width 

series from 122 trees. More than half (n=74) of these were canopy dominant trees.  

The importance of variable Year indicates a long-term trend in the ring width index over time. 

Specifically, ring width decreases with age. This trend is expected since annual radial growth 

tends to decrease as trees become larger and older. In addition to the trend associated with Year, 

the Random Forest model importance metrics highlight six additional variables: swemx_in.p, 

tmean.07p, swemx_in, tmean.09, ppt.06, and tmean.06. These variables indicate that total 

snowpack, early summer temperature and precipitation during the short dry season (June) are the 

most important determinants of ring width variability. The relationship with June precipitation is 

particularly interesting and suggests a non-linear or threshold effect. While precipitation amounts 

greater than two inches seems to cause little or no change in ring width, below two inches ring 

width index values drop off sharply (Figure 17). Variables relating to DOS were not identified by 

the Random Forest model as being important variables explaining variations in ring width.  

Overall, the Random Forest model was not able to produce as good a fit to the data compared 

with linear models (Table 8).  
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Figure 16 - Variable importance metrics for a Random Forest model of ring width index as a function of many 

hydroclimatic variables. The ring width index was produced from a chronology of 243 ring width series 

spanning years 1981-2012 from 122 trees in the Senator Beck Basin, Red Mountain Pass, CO. 

 

 

Figure 17 - Scatterplots showing relationships between ring-width index and important hydroclimatic variables.  

The linear model of ring width index included many of the same or similar variables. Again, Year 

was found to be important, as was snowpack amount for the previous water year. The importance 

of March and July temperatures for the WY of growth was consistent across models. For both of 

these, the relationship is negative indicating that warm temperatures negatively impact growth. 

Total SWE amount for the previous WY was also consistently important for explaining variation 

in ring width. For the linear model, AIC criteria suggest that SAG model residuals for the 

previous WY are informative and should be retained in the full and final model, however the 
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coefficient estimate for this parameter was not significantly different from zero which weakens 

the case for its importance.   Together, these data suggest that, forest-wide, tree ring width is most   

 

Figure 18 - Plot of observed (solid) and modeled (dashed) ring-width index for a chronology of 243 tree ring 

series (122 trees) in the Senator Beck Basin, Red Mountain Pass, CO. All series span the time period 1982-2013. 

Table 10 – Estimates and statistics for standardized coefficients of the final (linear) model of ring width index 

for all trees as a function of hydroclimatic variables. 

 

  

Coefficients:

Estimate Std. Error t Pr(>|t|)

(Intercept) -0.00051 0.091447 -0.006 0.995625

Year -0.28639 0.144695 -1.979 0.062461 .

swemx_in.p 0.36333 0.105589 3.441 0.002738 **

mod7resid.p 0.149414 0.100062 1.493 0.151802

ppt.08p 0.195492 0.108492 1.802 0.087451 .

ppt.09p 0.180159 0.09881 1.823 0.084034 .

ppt.01 0.186869 0.105028 1.779 0.091205 .

ppt.04 0.534803 0.136839 3.908 0.000945 ***

ppt.09 -0.23052 0.102115 -2.257 0.035947 *

tmean.03 -0.3614 0.118944 -3.038 0.006761 **

tmean.04 0.280155 0.133844 2.093 0.049987 *

tmean.07 -0.3176 0.120595 -2.634 0.016366 *
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Subset: Most sensitive trees 

The trees showing the most year-to-year variation in ring width are canopy subdominants in 

forests with a lower closed canopy structure (see section Tree-ring sensitivity, above). I created a 

ring width index using a small subset of the full dataset, just 13 series from a total of 7 trees that 

were classified in the field as CS and LCL.  

As with the full dataset, hydroclimatic variables relating to DOS effects did not correlate strongly 

with this index (Figure 19). 

 

Figure 19 - Scatterplots of ring width index for all trees and hydroclimatic variables related to dust-on-snow 

effects. For variable names, see Table 3 & Table 4. 

Similar to the model using all trees, this subset Random Forest model was not able to produce a 

good fit to the data. Using just the seven most important variables, the Random Forest model was 

able to explain only a moderate amount (44%) of the total variance. 

Variable importance metrics (Figure 20) from the RF model highlight the influence of snowpack, 

springtime precipitation and June precipitation on annual growth. There also appears to be a 

moderate positive association with February temperatures. 

The full final linear model explains 79% of the variance in ring width. As with the previous (all 

trees) model, late summer precipitation during the previous water year was found to be important, 

as was spring (March & April) and summer (July) temperatures. 
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Figure 20 - Variable importance ranking output from a Random Forest model of mean annual ring width 

among canopy subdominant (cs) trees located in a lower closed canopy (lcl) forest in the Senator Beck Basin, 

Red Mountain Pass, CO, USA. Data are from the period 1982-2013. 

 

Figure 21 - Scatterplots of ring width index for the canopy subdominant, lower closed canopy structure subset 

and important hydroclimatic variables identified using a Random Forest model. 
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Figure 22 - Plot of actual (solid) and modeled (dashed) ring-width index for 13 tree ring series (7 trees), each 

spanning the time period 1982-2013. 

Table 11 - Estimates and statistics for standardized coefficients of the final (linear) model of ring width index as 

a function of hydroclimatic variables. Ring width index is for the most sensitive subset of trees. 

 

Subset: Beetle-preferred trees 

During large outbreaks, beetles seek out large, dominant trees to attack. These trees contain a 

cambium layer that is more nutrient rich and supports larger broods compared with smaller, 

weaker trees. I modeled ring width using hydroclimatic variables for the subset of trees that are 

canopy dominants and larger than 40 cm in diameter at chest height. 

Correlation with DOS metrics was slightly stronger for the beetle-preferred subset, at least for the 

SAG date during the previous WY.  

The Random Forest variable importance metrics (Figure 24) suggest that summer temperatures 

and snowpack volume are the most important determinants of ring width variation. These results 

generally agree with the previous models. 

 

Coefficients:

Estimate Std. Error t Pr(>|t|)

(Intercept) -0.00041 0.085411 -0.005 0.99621

ppt.03p 0.162515 0.106997 1.519 0.14444

ppt.08p 0.256895 0.090206 2.848 0.00994 **

ppt.09p 0.254061 0.100959 2.516 0.0205 *

ppt.12p 0.313944 0.094037 3.339 0.00327 **

ppt.04 0.435881 0.1272 3.427 0.00267 **

ppt.06 0.24958 0.119325 2.092 0.04944 *

tmean.12p 0.271141 0.134662 2.013 0.05772 .

tmean.03 -0.54394 0.102873 -5.288 3.56E-05 ***

tmean.04 0.19199 0.136842 1.403 0.17595

tmean.07 -0.30184 0.101134 -2.985 0.00733 **
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Figure 23 - Scatterplots of ring width index for beetle-preferred trees and hydroclimatic variables related to 

dust-on-snow effects. For variable names, see Table 3 & Table 4.  Variable mod7resid is the unexplained 

variance in snow-all-gone day of year (see Snow-all-gone section, above). Variable mod7resid.p is for the 

previous water year. The plots furthest right show melt period for the same WY of growth (top) and previous 

WY (bottom), which is the SAG date minus the peak swe date. 

 

Figure 24 - Variable importance ranking output from a Random Forest model of mean annual ring width 

among beetle-preferred trees in the Senator Beck Basin, Red Mountain Pass, CO, USA. Data are from the 

period 1982-2013. 



 

The full and final linear model for ring width

and precipitation in general, is strongly associated with variation in ring width. Unlike the 

trees” and “sensitive trees subset”

existent in this model. This also contrasts with the Random Forest model for the same data. 

Another difference is the significance given to 

overtime is expected in tree-ring series, the weight given to the year effect (

coefficients represent magnitude of effect) for such a short period of time (~30 years) suggests 

that perhaps some other trend over time exists in the data that is enhancing the 

widths over time. A look at the temperature data

spring and summer temperatures

could not be attributed correctly to any “tmean” variable and would show up as a trend over time 

(ie. Year). Similarly, dust deposition has been increasing for at least the past 17 years 

al. 2013). 

Figure 25 – Spring and summer month temperatures for the period 1980

through July. Data are from the PRISM climate data set centered on Red Mountain Pass, CO.
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The full and final linear model for ring width of this subset indicates that previous WY snowpack, 

and precipitation in general, is strongly associated with variation in ring width. Unlike the 

trees” and “sensitive trees subset” models, associations with temperature are practically

. This also contrasts with the Random Forest model for the same data. 

Another difference is the significance given to Year as a variable. While declining ring width 

ring series, the weight given to the year effect (standardized 

coefficients represent magnitude of effect) for such a short period of time (~30 years) suggests 

that perhaps some other trend over time exists in the data that is enhancing the decrease 

over time. A look at the temperature data (Figure 25) show a gradual warming 

spring and summer temperatures. Because monthly and not seasonal data were used, such a trend 

ectly to any “tmean” variable and would show up as a trend over time 

Similarly, dust deposition has been increasing for at least the past 17 years 

Spring and summer month temperatures for the period 1980-2012. Months shown are March 

RISM climate data set centered on Red Mountain Pass, CO. 

 

of this subset indicates that previous WY snowpack, 

and precipitation in general, is strongly associated with variation in ring width. Unlike the “all 

practically non-

. This also contrasts with the Random Forest model for the same data. 

as a variable. While declining ring width 

standardized 

coefficients represent magnitude of effect) for such a short period of time (~30 years) suggests 

decrease in ring 

gradual warming trend in 

. Because monthly and not seasonal data were used, such a trend 

ectly to any “tmean” variable and would show up as a trend over time 

Similarly, dust deposition has been increasing for at least the past 17 years (Brahney et 

 

2012. Months shown are March 
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Figure 26 - Scatterplots of ring width index for the beetle-preferred trees subset and important hydroclimatic 

variables identified using a Random Forest model. 

 

Figure 27 - Plot of actual (solid) and modeled (dashed) ring-width index for 13 tree ring series (7 trees), each 

spanning the time period 1982-2013. 
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Table 12- Estimates and statistics for standardized coefficients of the final (linear) model of ring width index as a 

function of hydroclimatic variables. Ring width index is for beetle-preferred trees, which are canopy dominant 

trees 40ccm dbh or larger. 

 

Conclusions 

While the influence of DOS effects on tree growth cannot be ruled out, the magnitude of any 

DOS effect is probably very small relative to variables such as snowpack volume and growing 

season temperatures. However, the snowmelt metrics used in this study come from a single 

location whereas the tree ring data come from several locations with varying aspects, forest 

structures, stand densities and proximity to surface flow. Because shading by terrain and 

vegetation play key roles in the energy input and melting of snowpack, the snowmelt data used in 

this study may not be representative of the conditions experienced by trees sampled on sunnier 

locations. It is possible that snowmelt data collected from more extreme locations (south-facing 

with open forest)  would have correlated more strongly with tree ring data collected from trees on 

sunnier, more open aspects. 

Perhaps the most interesting finding in this study relates to the degree with which trees in SBB 

show sensitivity to moisture stress. Conventional thinking suggests tree growth at high elevations 

(such as those in the SBB) is more strongly influenced by growing season length than moisture 

deficit. The data in this study suggest high elevation trees may show sensitivity to moisture stress 

especially sub-dominant trees located in dense, relatively closed forest.These data do not suggest 

that tree growth increases with warmer temperatures, a notable exception being during April, but 

ratherthat warmer temperatures and drier conditions are associated with decreased growth. 

However, canopy dominant trees appear less sensitive overall compared with sub-dominants. An 

explanation for this might be that in drier years, competition for water is more intense and 

dominant trees are stronger competitors and able to capture more of the resources they need 

relative to sub-dominant trees. 

If trees in the SBB are showing sensitivity to moisture stress, it is not unreasonable to think that 

faster snowmelt would increase competition and result in moisture stress among at least some part 

of the population. However, the magnitude of this DOS effect appears small compared to the 

effect of exceptionally warm, dry years—like 2002, 2003, 2012—regardless of DOS effect. And 

while DOS may exacerbate moisture stress during periods of drought, the effect of the drought 

alone is very large as indicated by the strong correlations between ring width and SWE amount 

and the large coefficient for SWE amount in the linear models. 

  

Coefficients:

Estimate Std. Error t Pr(>|t|)

(Intercept) -0.00491 0.090239 -0.054 0.957171

Year -0.36274 0.119623 -3.032 0.006578 **

swemx_in.p 0.434094 0.107975 4.02 0.000671 ***

mod7resid.p 0.152962 0.096793 1.58 0.129723

ppt.02p 0.353631 0.130235 2.715 0.013323 *

ppt.03p 0.182608 0.10791 1.692 0.106126

ppt.07p 0.206389 0.10015 2.061 0.052566 .

ppt.08p 0.17497 0.108077 1.619 0.121124

ppt.09p 0.25546 0.104339 2.448 2.37E-02 *

ppt.09 -0.16034 0.093944 -1.707 0.103343

tmean.01 -0.23552 0.119318 -1.974 0.062369 .
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Location coordinates 

ident Latitude,N Longitude y_proj x_proj 

SBB01 37.909485 -107.707915 -1114421.6898722 5009105.20191292 

SBB02 37.910071 -107.709046 -1114260.60017112 5008747.70542686 

SBB03 37.909918 -107.708693 -1114300.06191537 5008857.58523165 

SBB04 37.909354 -107.708203 -1114482.05208811 5009030.09225092 

SBB05 37.910693 -107.709598 -1114060.41535226 5008554.1343745 

SBB06 37.911238 -107.710987 -1113925.7650148 5008125.02359974 

SBB07 37.912134 -107.712 -1113647.19363941 5007783.75379957 

SBB08 37.902519 -107.713423 -1117189.93322468 5007922.05323974 

SBB09 37.904661 -107.717167 -1116583.44736488 5006727.0766932 

SBB10 37.90754 -107.710072 -1115222.49452682 5008597.41961228 

SBB11 37.90558 -107.711991 -1116018.00476491 5008158.67677356 
 

 


