Senator Beck Basin Long-term Vegetation Study 2009 Re-Survey

Final Report Presented to the Center for Snow and Avalanche Studies, Silverton, Colorado

January 2010

Abstract

Climate greatly influences vegetation composition, abundance, and distribution. Predicted climate change in the Rocky Mountains of the western United States may lead to the reduction of snow pack and stream flow, and increase land surface drying. These events, as well as the movement of plant species upslope in response to warming, and the reduction of endemic species at the exterior of their ranges have already been documented. In southwest Colorado, there have been overall increases in mean temperature and decreases in total precipitation over the last century. In addition to the impact of these long-term trends, vegetation also has an immediate response to short-term fluctuations in water availability. Repeated measures of permanently placed vegetation plots can show the impacts of both long- and short-term climate patterns on vegetation. In 2004, a long-term vegetation study was initiated in Senator Beck Basin in the San Juan Mountains of southwestern Colorado. These permanent vegetation transects were read again in 2009 and a comparison of the two readings is presented here. Results show a significant difference in the vegetation of the basin in the five-year period since initial transect set-up. An additional 39 species were recorded from the transects in 2009, while 26 species found in 2004 were not recorded in 2009. Mean total cover of vegetation and mean diversity increased greatly from 2004 to 2009 throughout the study area. The differences can largely be explained by higher total precipitation in each of the years since the first reading, especially during the winter of 2008-2009.

Introduction

In 2004, the Center for Snow and Avalanche Studies solicited a baseline survey of the vegetation and soil surface characters of Senator Beck Basin, Ouray County, Colorado. In July and August of that year, Peggy Lyon, Julia Hanson, Maggie March, and Sara Eastin of the Colorado Natural Heritage Program, and Julie Crawford, independent researcher, collected data in 23 transects from three elevational belts representing six habitat types (see Crawford 2004). Analysis of baseline data suggested that the vegetation of the Upper and Lower belts were different from one another, while that of the Middle elevation belt, due to geographic proximity to both Upper and Lower belts, was similar to both Upper and Lower belt vegetation. The Middle belt was also the richest in species composition and had the greatest species diversity. In July of 2009, Peggy Lyon, Dawson White, and Sara Simonson read the transects for a second time. The objective of the second reading was to document changes in the vegetation over a five-year period. The data were analyzed and are reported on herein by Julie Crawford.

Methods

Initial set-up in early July 2004 consisted of subjective placement of 23 transects within 3 northsouth oriented belts (Upper, Middle, Lower) located across upper, mid-, and lower-slopes on north, east, and south-facing aspects of Senator Beck Basin. The three belts covered an elevational range from 11,040' (3,365m) to 13,040' (3,975m), with transects in the Upper belt completely above treeline, those in the Lower belt completely below, and those in the Middle belt spanning both. Transects were placed to ensure comprehensive sampling from many habitats: spruce-fir forest, krummholz, wetlands, wet meadows, rock outcrops, and dry tundra.

Figure 1: Example of microframe and transect tape.

Transects were 100 feet (30.5m) in length and permanently marked at each end and then photo-documented. Each transect contained ten Daubenmire microframes placed with the 5dm side of the frames dividing the tape (Figure 1); they were placed ten feet (3m) apart beginning at the 5 foot (1.5m) mark for a total of 10 microframes per transect. Percent cover of vegetation by species, and the soil surface characteristics bare - soil, rock, standing water, and litter - were measured using a cover class scale of trace=0-0.99%, 1=1-5%, 2=6-25%, 3=26-50%, 4=51-75%, 5=76-95%, and 6=96-100%. For analysis, these cover classes were replaced with median cover (trace=0.5, 1=3, 2=15.5, 3=38, 4=63, 5=85.5, and 6=98) and averaged across the 10 microframes for a single cover record for each species and abiotic factor

in each transect. See Crawford (2004) for a full description. Nomenclature follows Weber, 1987.

Species richness (Moore and Capman 1986) and Shannon Species Diversity Index (Kent and Coker 1992) were calculated for each transect. Floristic composition among transects was explored using Non-metric Multidimensional Scaling using the program PC-ORD (McCune and Mefford 1999). Dissimilarity in floristic composition between transects was calculated using the Relative Euclidean measure of dissimilarity. The program SYSTAT was used to create 90% confidence ellipses around transects of the three belts for each year of study (Systat 2002). Indicator Species Analysis (McCune and Mefford 1999) was used to identify species indicative of the three belts for each year of study by calculating an importance value and associated *p*-value (Monte Carlo test) for each species. Indicator values are calculated by combining relative abundance and relative frequency following the method of Dufrene and Legendre (1997). Repeated Measures Analysis of Variance was performed on mean total cover, mean species richness, and mean Shannon Diversity by belt and year using the program R (R Development Core Team 2008).

RESULTS

Species

There were a total of 131 identified vascular plant species in the 2004 and 143 identified vascular plant species in the 2009 readings of the Senator Beck Basin long-term vegetation transects (Appendix One). Twenty-six species recorded in 2004 were not recorded in 2009, while 39 species were recorded for the first time in 2009. Among the species recorded in 2009, two are exotic: *Taraxacum officinale* G.H. Weber ex Wiggers (dandelion) and *Poa pratensis* L.

(Kentucky bluegrass). These species both had minimal cover; *T. officinale* was found in four transects and within all three belts, its cover increased since 2004. *Poa pratensis* was found for the first time in 2009 in just one transect of the Lower belt. There were five Colorado endemics: *Besseya ritteriana* (Eastw.) Rydb., *Draba graminea* Greene (Figure 2), *Draba streptobrachia* Price, *Polemonium confertum* Gray, and *Trifolium salictorum* Greene, and eight communities / 13 species of conservation concern tracked by

Figure 2. Colorado endemic *Draba graminea* – Photo copyright Al Schneider. within the study area (Table 1)

the Colorado Natural Heritage Program recorded within the study area (Table 1).

Plant Community Caltha leptosepala Acomastylis rossii herbaceous vegetation A. rossii / Bistorta bistortoides A. rossii / Trifolium sp. Ligusticum porteri / Vicia americana Picea engelmannii / A. rossii krummholz Salix arctica / A. rossii Salix planifolia / Caltha leptosepala	Status G4S4 G4S554 G3S3S4 G3S3 G3?SU G4S4 G4S4	Plant Species Besseva ritteriana Draba crassa Draba graminea Draba streptobrachia Erigeron melanocephalus Erigeron pinnatisectus Minuartia macrantha Packera crocata Packera dimorphophylla Podistera eastwoodiae Potentilla subjuga Ranunculus macaulevi Trifolium attenuatum	Status G3G4S3S4 G3S3 G2S2 G3S3 G4S4 G4S4 G3S3 G4S3S4 G4S3S4 G4S33 G4S33 G4S354 G3G4S3S4
--	---	---	--

Table 1 (NatureServe 2009). Plant communities and species tracked by the Colorado Natural Heritage Program found within the Senator Beck Basin long-term vegetation transects during the 2009 survey. Conservation status is designated by a letter reflecting the appropriate geographic scale of the assessment (G = Global, N = National, S = Subnational), followed by a number from 1 to 5 (1 = critically imperiled, 2 = imperiled, 3 = vulnerable to extirpation or extinction, 4 = apparently secure, and 5 = demonstrably widespread, abundant, and secure).

There were 20 recorded species requiring alpine conditions found within the above treeline transects (all transects of the Upper belt and transects 2, 3, 4, and 6 of the Middle belt) of Senator Beck Basin (Table 2; Harrington 1954; Hultén 1968; Weber 1987; Hogan 1992; Flora of North America Editorial Committee 1993+; Welsh and others 1993; Michener-Fote and Hogan 1999). Species that are alpine obligates and occur in no other location, e.g. Colorado endemics (*Draba graminea*) or that are at the lower latitudinal limits of their distribution (*Draba borealis* D.C., *Draba crassifolia* Graham, *Lloydia serotina* (L.) Salisb. ex Rchb., and *Potentilla uniflora* Ledeb.), are at greatest risk of extinction, at least locally, due to earlier snow melt, extended drought, and warming temperatures.

Besseya alpina	Erigeron simplex
Castilleja haydenii	Lloydia serotina
Castilleja occidentalis	Oreoxis bakeri
Cerastium beeringianum ssp. earlei	Potentilla subjuga
Chionophila jamesii	Potentilla uniflora
Draba borealis	Salix reticulata ssp. nivalis
Draba crassa.	Silene acaulis ssp. subacaulescens
Draba crassifolia	Tetraneuris grandiflora
Draba graminea	Tonestus pygmaeus
Erigeron pinnatisectus	Trifolium nanum

Table 2. Alpine obligate species found in above treeline transects of the Senator Beck Basin long-term vegetation study area in 2009.

Of the 144 species occurring in the above treeline transects in both years of study combined, 12 (8.3%) are known primarily from subalpine environments (Table 3; Harrington 1954; Hultén

1968; Weber 1987; Hogan 1992; Flora of North America Editorial Committee 1993+, Welsh and others 1993; Michener-Fote and Hogan 1999). The presence of these species may be an indicator of climate change already in progress. Also of interest is a small cover reading of *Ligusticum porteri* Coult. & Rose, a common subalpine species, recorded in 2009 but not in 2004 from transect one of the Middle belt. This transect is in the transition zone between krummholz and lower alpine and contains predominantly species typical of alpine tundra.

Plant Species	Belt – Transect(s)	Elevation
Calamagrostis canadensis	Upper - 12	12,150' (3,703m)
Carex microptera	Upper - 11	12,320' (3,755m)
Carex rossii	Middle - 6	12,080' (3,682m)
Descurainia incana	Middle - 3	12,020' (3,664m)
Dugaldia hoopsii	Middle - 4	12,040' (3,670m)
Geranium richardsonii	Middle - 6	12,080' (3,682m)
Ligusticum porteri	Middle 2 & 4	12,070' (3,679m), 12,040' (3,670m)
Luzula parviflora	Upper - 7, 8, 10 Middle - 4	12,670' (3,676m), 12,730' (3,880m), 13,030' (3,972m), 12,040' (3,670m)
Oxypolis fendleri	Middle - 3 & 4	12,020' (3,664m), 12,040' (3,670m)
Ranunculus inamoenus	Middle - 4	12,040' (3,670m)
Stellaria crassifolia	Upper - 12 Middle - 3 & 6	12,150' (3,703m), 12,020' (3,664m), 12,080' (3,682m)
Thalictrum fendleri	Middle - 3	12,020' (3,664m)

Table 3. Species found in above treeline transects of the Senator Beck Basin long-term vegetation study area in 2004 and/or 2009 that are known primarily from subalpine environments; locations where they were recorded.

Indicator Species Analysis was run for both 2004 and 2009 datasets following discovery of two errors in the 2004 dataset and analysis. These errors were: 1) a misidentification of *Vaccinium cespitosum* Michx. (previously reported as *V. myrtillus* L.) and 2) an inadvertent omission of *Acomastylis rossii* (R. Br) Greene ssp. *turbinata* (Rydberg) Weber data that was collected in 2004, but not analyzed. These two errors were remedied in 2009. In all belts, at least three indicator species were the same between the two years of study (Table 4). Both Upper and Lower belts contained greater numbers of indicator species in 2009, while the Middle belt contained fewer.

	2004			2009		
Belt	Species	IV	<i>p</i> -value	Species	IV	<i>p</i> -value
Upper	Poa alpina	87	0.001	Poa alpina	89	0.001
	Bistorta bistortoides	69	0.027	Bistorta bistortoides	85	0.001
	Acomastylis rossii	68	0.002	Deschampsia cespitosa	76	0.001
	Festuca brachyphylla	59	0.086	Acomastylis rossii	74	0.001
	Micranthes rhomboidea	51	0.099	Sibbaldia procumbens	72	0.005
	Artemisia scopulorum	49	0.064	4 Potentilla diversifolia		0.029
	Carex nova	49	0.079	9 Carex haydeniana		0.014
				Castilleja occidentalis	50	0.047
				Trifolium parryi	50	0.054
				Lloydia serotina	42	0.074
			Oreoxis bakeri		42	0.097
				Erigeron melanocephalus	41	0.088
Middle	Vaccinium cespitosum	76	0.003	Vaccinium cespitosum	89	0.001
	Viola labridorica	67	0.007	Salix brachycarpa	50	0.021
	Trifolium salictorum	58	0.013	Picea engelmannii	48	0.027
	Potentilla sp.	55	0.01	1 Allium geyeri		0.061
	Allium geyeri	55	0.015	015 Oreoxis alpina		0.086
	Draba aurea	50	0.014	14 Danthonia intermedia		0.094
	Aquilegia coerulea	50	0.016	6 Primula parryi		0.094
	Minuartia macrantha	50	0.019	9		
	Salix planifolia	44	0.079	9		
	Packera dimorphophylla	41	0.079	9		
	Primula parryi	33	0.092	2		
	Antennaria rosea	33	0.095			
-						
Lower	Fragaria virginiana	60	0.069	Dugaldia hoopsii	80	0.005
	Aconitum columbianum	40	0.011	Ligusticum porteri	76	0.002
	Arnica corditolia	40	0.043	Mertensia ciliata	66	0.009
	Achillea lanulosa	40	0.045	Chamerion danielsii	60	0.007
	Ligusticum porteri	40	0.048	Fragaria virginiana	60	0.007
	Dugaidia noopsii	40	0.054		60	0.008
	Draba spectabilis	40	0.093	Ligularia Digelovii	60	0.012
		30	0.004		6U 57	0.012
	Ranunculus mamoenus	33	0.091	Poa cusickii	57	0.02
					32	0.022
				Achillos Januloss	47	0.024
				Achillea lanulosa		0.039
				Carex geyeri		0.039
				Carey aquatilis	40	0.04
				Epilobium bornemennii	40	0.04
				Vaccinium myrtillus	40	0.04
				Cardamine cordifolia	40	0.04
	1			Veratrum tenuinetalum	40	0.040
	1			Geranium richardsonii	27	0.040
				Senecio triangularis	21	0.040
					51	0.08

Table 4. Significant ($p \le 0.1$) results from Indicator Species Analysis of the Senator Beck Basin long-term vegetation study area data for 2004 and 2009, respectively. Indicator value (IV); *p*-values significant at the 0.05 level are in bold.

Communities

Mean species richness by transect was higher in the Upper and Lower belts in 2009, but was lower in the Middle belt in 2009 (Figure 3). Repeated Measures Analysis of Variance (ANOVA) showed significant difference (p=0.0129) in mean species richness between the two years and showed that vegetation of the belts are not all behaving in the same way (p=0.001; Figure 4). Mean species diversity increased in all belts in 2009 (Figure 5); these changes were significant (p<0.001) in Repeated Measures ANOVA (Figure 6). In addition to the changes in species composition between the two readings, mean total vegetation cover increased greatly from 2004 to 2009 in all three belts (Figure 7). Repeated Measures Analysis of Variance verified these differences (p<0.0001; Figure 8).

Figure 3. Mean species richness by transect in 2004 and 2009 in the Senator Beck Basin long-term vegetation transects.

Figure 5. Mean Shannon Diversity Index by transect in 2004 and 2009 in the Senator Beck Basin long-term vegetation transects.

Figure 4. Repeated measures ANOVA showing mean species richness changes from 2004 to 2009 in the Senator Beck Basin long-term vegetation transects.

Figure 6. Repeated measures ANOVA showing mean Shannon Diversity Index changes from 2004 to 2009 in the Senator Beck Basin long-term vegetation transects.

Figure 7. Mean total cover of vascular plant species recorded in 2004 and 2009 in the Senator Beck Basin long-term vegetation transects.

Results from NMDS show similar patterns in both 2004 and 2009 with respect to the vegetation of the three belts (Figure 9). As reported in 2004, points of the Middle belt spanned both Upper and Lower belts, showing the similarity of species composition and abundance between this transitional belt and both the Upper and Lower belts. Points from the Lower belt in both 2004 and 2009 are widely distributed in ordination space showing the great variety of habitats present there. The Middle belt points, with fair distribution,

Figure 8. Repeated measures ANOVA showing mean total species cover changes from 2004 to 2009 in the Senator Beck Basin long-term vegetation transects.

Figure 9. Results from 2004 and 2009 Non-Metric Multi-Dimensional Scaling of floristic data from three belts within the Senator Beck Basin long-term vegetation study area. Circles represent a 90% Confidence Ellipse according to Lower, Middle, or Upper elevation belt.

were very similar in ordination space for the two years, as were the more tightly grouped Upper belt points.

Climate

The nearest long-term (since 1906) climate station to Senator Beck Basin is in the town of Silverton, Colorado roughly 7.75 miles (12.5km) to the east-south-east (Western Regional Climate Center 2009). Graphs of those data, aided by trendlines, reveal an overall increase in mean annual temperature and an overall decrease in total annual precipitation over the period of record (Figures 10 and 11).

Figure 10. Mean annual temperature (F) recorded in Silverton, Colorado from 1906 through 2005. The trendline (linear regression) indicates an overall increase in mean annual temperature over the period of record.

Figure 11. Total annual precipitation (inches) recorded in Silverton, Colorado from 1906 through 2005. The trendline (linear regression) indicates an overall decrease in total annual precipitation over the period of record.

Long-term climate trends may lead to plant species moving up in elevation and possibly local extinctions from loss of suitable habitat or competition; short-term climate impacts can be seen immediately. Yearly fluctuations in available water to seeds and plants greatly influence composition, abundance, and size of individual plants from year to year. The nearby Snotel weather station on Red Mountain Pass has recorded precipitation since 1981 (Figure 12; Natural Resources Conservation Service, 2009). Here, precipitation recorded on a water year basis (October-September), shows wet winters in the early 1980s, the mid 1990s, and again in 2008. Since vegetation transects were measured at the same time of year in both 2004 and

2009 (July), precipitation factors are the next most important consideration in understanding the difference in vegetation response during those years.

Figure 12. Red Mountain Pass Snotel total yearly precipitation data for the water years 1981 through 2008. A moving average trendline (grey) better shows decadal fluctuations.

A closer look (Figure 13) at monthly Snotel precipitation data from Red Mountain Pass for Water Years 2004 and 2009 reveals more snow precipitation in WY 2009 (33.3" total WY precipitation by the end of May in 2004 vs. 29.9" in WY 2009), and substantially more rain in June 2009 than in June 2004 (3.6" in June 2009 vs. 0.5" in June 2004).

Monthly Precipitation Totals for Red Mountain Pass Snotel

Figure 13. Red Mountain Pass Snotel monthly precipitation data for the water years 2004 and 2009 showing higher total precipitation from October 2008 through June 2009, than the same period in 2003-2004. Vegetation transects were measured during July in both 2004 and 2009.

Discussion

Long-term data collection from permanent plots is a necessary tool to understand vegetation changes over time. The short period of time between the first (July 2004) and second (July

2009) readings of the Senator Beck Basin permanent transects does not allow any interpretation of long-term change. The great differences seen in richness, diversity, cover, and composition can, in all probability, be attributed to yearly fluctuations in precipitation and timing of water availability. Increases in dust deposition in the San Juan Mountains has been shown to cause earlier snowmelt, making water available before temperatures are warm enough to initiate plant leaf-out and flowering (Steltzer and others 2009). Because water that becomes available too early may not be useful to alpine plant development, the greater amount of snow precipitation over the winter in 2009 may be less important than the increased rain precipitation in June of that year. The cool temperatures associated with the wet June, coupled with 4x-5x higher dust-in-snow concentrations in 2009 than in 2004, and a corresponding advance in snowmelt timing (Snow Optics Lab, 2009), may have aided in the observed delay of leafing and flowering of alpine plants in 2009, followed by a period of rapid growth (personal observation, Chris Landry). This combination of delayed but rapid growth may have led to the higher richness, diversity, and cover in the vegetation observed in July 2009 and illustrate the simultaneous leaf-out and flowering associated with dust-induced advances in snowmelt timing described by Steltzer et al. (2009).

Sixty-one of the 65 species occurrences (93.8%) detected in either, but not both, 2004 or 2009 had less than 12.5% total combined cover from all transects. Most readings were individual occurrences or small plants with less than 1% total combined cover; the other larger percentages could possibly be attributed to a few larger individuals. The remaining four species are more problematic: 1) Carex haydeniana Olney had over 35% cover across seven Upper belt transects in 2009, but was not recorded in 2004, 2) Carex microptera Mackenzie, a subalpine species, had 17.5% cover across two Upper belt transects in 2004, but was not recorded in 2009, 3) Vaccinium myrtillus had 22% cover across two Lower belt transects in 2009, but no Vaccinium sp. were recorded in any transect of the Lower belt in 2004, and 4) Salix brachycarpa Nutt had 19.5% cover over three Middle belt transects in 2009, but was not recorded in any transect of any belt in 2004. One possible cause for these differences could be an artifact of differing plant identification between the two years. Transect by transect, these 2009 data were compared to data of similar species they might have been confused with in 2004, but in no instance did this theory hold. Since a representative collection of all species recorded in each year of survey was not collected, it is impossible to verify identification. Peggy Lyon is a skilled botanist with an affinity for *Carex* species and the proven ability to identify these and other difficult species readily. It is therefore likely, given that Peggy was principal botanist in both 2004 and 2009, that few or no species were misidentified in either year.

Other possibilities for explaining these high cover readings include 1) Daubenmire frames slightly missing / hitting species or being placed in the wrong location in either year, 2) the movement, disappearance, or appearance of species due to variations in available water, seedbank, herbivory and other disturbance, and 3) individual species life history characteristics.

There is no way to investigate the first two possibilities. In terms of life history, both *Carex* species are seed-producers, lacking a rhizome and the ability to "creep" into microframes; any plants would have to have been grown from seed in the five-year period. The *Vaccinium* reproduces both sexually and asexually and is known to create a seedbank; it is doubtful that this shrub could have grown from seed in a five-year period to the proportions required to make 22% cover. The *Salix* is primarily a seed-producer, but does re-sprout due to disturbance, and *Salix* in general are heavily utilized and disturbed by both small and large mammals. Like *Vaccinium*, it is most likely that this species, if truly a new find in 2009, was from asexual reproduction given the five-year time frame. Another possibility for the shrub occurrences is impact of long-term climate warming that has been shown in studies throughout the arctic (e.g. see ITEX) to increase cover of shrub species. Could these phenomena be associated with warming over this short of a time period? Were they from misplacements of the Daubenmire frame in one or both years? Were they from misidentification? There is no way to tell; longer-term research may eventually provide some answers.

Recommendations

Because long-term changes in vegetation communities at Senator Beck Basin will likely not be obvious for many years, it is recommended that key species and transects be observed carefully from reading to reading in the short-term (e.g. next four or five readings). Key species should include alpine obligates (e.g. Have these species reduced in numbers or cover over the years? Are disturbances impacting these species?), subalpine species (e.g. Have those reported herein or other lower elevation species moved into the alpine over time?), and indicator species (e.g. Are the key indicator species changing over time? Do any exotic species ever increase in richness or abundance enough to become indicators [and threats]? Do shrub species increase and herbaceous species decrease in richness or abundance as predicted in numerous climate change studies?). Should funding be short in any year of re-measure, it is recommended that the Middle belt, at a minimum, be re-surveyed. This belt, due to its placement in the transition between treeline and lower alpine will likely be the first location where the long-term impacts of climate change will be seen. For example, the new records of Ligusticum porteri in the krummholz of Middle belt transect one suggests a recent movement upslope. Indeed, the presence of subalpine species within many alpine transects suggests that long-term climate warming and drying have influenced vegetation at the site for decades. The reason for the reduction in species richness and indicator values in 2009 in the Middle belt is unknown and warrants further investigation.

Over the next few decades, the then longer-term available weather, snow pack, and hydrologic observations data collected within Senator Beck Basin itself (http://www.snowstudies.org /data.html) should be compared directly with collected vegetation data. In doing so, patterns will likely emerge showing which species are most sensitive to drought or high water availability. It is also recommended that in all future monitoring, funding be in place to make a complete

collection of all species recorded that year from areas near, but outside of the transects. These collections should be placed in a regional herbarium or possibly in a professional herbarium case within the offices of the Center for Snow and Avalanche Studies in Silverton. Lastly, it is recommended that previous years data be taken into the field and compared after each transect is read. This kind of self-check while in the field can prevent misplacement of microframes and identification issues when looking at the data later on, and may be a red flag for small plants otherwise missed without in-depth searching. By comparing results after the transects are read, there is no bias introduced and the data will be stronger for direct comparisons.

References Cited

Crawford, J., 2004: Senator Beck Basin Baseline Vegetation Survey 2004 Final Report. Submitted to The Center for Snow and Avalanche Studies, Silverton, CO.

Dufrene, M. and Legendre, P., 1997: Species assemblages and indicator species: the need for a flexible asymmetrical approach. *Ecological Monographs*, 67: 345-366.

Flora of North America Editorial Committee, eds. 1993+: *Flora of North America North of Mexico*. 12+ vols. New York and Oxford. Available http://www.efloras.org/flora_page.aspx?flora_id=1.

Harrington, H.D., 1954: Manual of the Plants of Colorado. Sage Books, Denver. 666 pp.

Hogan, T., 1992: A floristic survey of the Eagle Nest Wilderness Area in the southern Gore Range of Central Colorado. Boulder: University of Colorado Museum. 35 pp.

Hultén, E., 1968: *Flora of Alaska and Neighboring Territories: A Manual of the Vascular Plants*. Stanford: Stanford University Press. 1008 pp.

Lesica, P. and McCune, B., 2004: Decline of arctic-alpine plants at the southern margin of their range following a decade of climatic warming. *Journal of Vegetation Science* 15:679-690.

Kent, M. and Coker, P. 1992. *Vegetation Description and Analysis – A practical approach*. West Sussex: Short Run Press. 363 pp.

McCune, B. and Mefford, M.J., 1999: *Multivariate Analysis of Ecological Data*: Version 4.25 MjM Software, Gleneden Beach, Oregon, U.S.A.

Michener-Foote, J. and Hogan, T., 1999: *The flora and vegetation of the Needle Mountains, San Juan Range, southwestern Colorado*. Boulder: University of Colorado Museum. 39 pp.

Moore, P.D. and Chapman, S.B. 1986. *Methods in Plant Ecology.* Oxford: Blackwell Science. 604 pp.

NatureServe, 2009: *NatureServe Explorer: An online encyclopedia of life* [web application]. Version 7.1. NatureServe, Arlington, Virginia. Available http://www.natureserve.org/explorer.

Natural Resources Conservation Service, 2009: *Colorado SNOTEL Sites*. http://www.wcc.nrcs.usda.gov/snotel/Colorado/colorado.html.

R Development Core Team. 2008. *R: A language and environment for statistical computing*. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.

Snow Optics Laboratory, 2009. Data presented at American Geophysical Union Fall Meeting, San Francisco, in poster sessions authored respectively by Bryant, Skiles, Painter (Snow Optics Laboratory, University of Utah); articles in preparation.

Steltzer, H., Landry, C., Painter, T.H., Anderson, J., and Ayres, E. 2009. Biological consequences of earlier snowmelt from desert dust deposition in alpine landscapes. Proceedings of the National Academy of Sciences of the United States of America. 106(28): 11629-11634.

Systat, 2002. Systat Software Version 10.2 2002. http://www.systat.com

Weber, W.A., 1987: *Colorado Flora: Western Slope*. Boulder: Colorado Associated University Press. 530 pp.

Welsh, S., Atwood, D., Goodrich, S., and Higgins, L., 1993: *A Utah Flora*, 2nd ed. Provo: Print Services Brigham Young University. 986 pp.

Western Regional Climate Center, 2009: http://www.wrcc.dri.edu/.

2004	2009	Family	Plants Database Name	Weber Name	Common Name	Life Form
Х	Х	Apiaceae	Allium geyeri S. Wats.	Allium geyeri	Geyer's onion	Herbaceous
х		Apiaceae	<i>Angelica grayi</i> (Coult. & Rose) Coult. & Rose	Angelica grayi	Gray's angelica	Herbaceous
Х	х	Apiaceae	Ligusticum porteri Coult. & Rose	Ligusticum porteri	Porter's licorice- root	Herbaceous
х	х	Apiaceae	<i>Oreoxis alpina</i> (Gray) Coult. & Rose	Oreoxis alpina	alpine oreoxis	Herbaceous
	х	Apiaceae	Oreoxis bakeri J.M. Coult. & Rose	Oreoxis bakeri	Baker's alpineparsley	Herbaceous
х	х	Apiaceae	<i>Oxypolis fendleri</i> (Gray) Heller	Oxypolis fendleri	Fendler's cowbane	Herbaceous
х	х	Apiaceae	Podistera eastwoodiae (Coult. & Rose) Mathias & Constance	Podistera eastwoodiae	Eastwood's podistera	Herbaceous
x	x	Apiaceae	Pseudocymopterus montanus (Gray) Coult. & Rose	Pseudocymopterus montanus	alpine false springparsley	Herbaceous
х	х	Asteraceae	Achillea millefolium L. var. occidentalis DC.	Achillea lanulosa	western yarrow	Herbaceous
х		Asteraceae	<i>Agoseris aurantiaca</i> (Hook.) Greene	Agoseris aurantiaca	orange agoseris	Herbaceous
Х	Х	Asteraceae	Agoseris glauca (Pursh) Raf.	Agoseris glauca	pale agoseris	Herbaceous
Х		Asteraceae	Antennaria rosea Greene	Antennaria rosea	rosy pussytoes	Herbaceous
х	х	Asteraceae	Antennaria umbrinella Rydb.	Antennaria umbrinella	umber pussytoes	Herbaceous
Х	Х	Asteraceae	Arnica cordifolia Hook.	Arnica cordifolia	heartleaf arnica	Herbaceous
	Х	Asteraceae	Arnica latifolia Bong.	Arnica latifolia	broadleaf arnica	Herbaceous
Х	Х	Asteraceae	Arnica mollis Hook.	Arnica mollis	hairy arnica	Herbaceous
х	х	Asteraceae	Artemisia scopulorum Gray	Artemisia scopulorum	alpine sagebrush	Herbaceous
х	х	Asteraceae	Erigeron coulteri Porter	Erigeron coulteri	large mountain fleabane	Herbaceous
х	х	Asteraceae	<i>Erigeron melanocephalus</i> (A. Nels.) A. Nels.	Erigeron melanocephalus	blackhead fleabane	Herbaceous
х	х	Asteraceae	<i>Erigeron peregrinus</i> (Banks ex Pursh) Greene	Erigeron peregrinus	subalpine fleabane	Herbaceous
х	х	Asteraceae	Erigeron pinnatisectus (Gray) A. Nels.	Erigeron pinnatisectus	featherleaf fleabane	Herbaceous
Х	Х	Asteraceae	Erigeron simplex Greene	Erigeron simplex	onestem fleabane	Herbaceous
х		Asteraceae	<i>Erigeron speciosus</i> (Lindl.) DC.	Erigeron speciosus	aspen fleabane	Herbaceous
	х	Asteraceae	Hieracium gracile Hook.	Chlorocrepis tristis ssp. gracilis	slender hawkweed	Herbaceous
х	х	Asteraceae	<i>Hymenoxys hoopesii</i> (Gray) Bierner	Dugaldia hoopsii	owl's-claws	Herbaceous
	Х	Asteraceae	Oreochrysum parryi (A. Gray) Rydb.	Oreochrysum parryi	Parry's goldenrod	Herbaceous
х	х	Asteraceae	Packera crocata (Rydb.) W.A. Weber & A. Löve	Packera crocata	saffron ragwort	Herbaceous
x	x	Asteraceae	Packera dimorphophylla (Greene) W.A. Weber & A. Löve ssp. dimorphophylla	Packera dimorphophylla	splitleaf groundsel	Herbaceous
х	х	Asteraceae	Senecio amplectens Gray var. holmii (Greene) Harrington	Ligulara holmii	Holm's ragwort	Herbaceous

APPENDIX ONE: LIST OF SPECIES, family, life form, and what year they were recorded.

2004	2009	Family	Plants Database Name	Weber Name	Common Name	Life Form
	х	Asteraceae	Senecio bigelovii A. Gray var. bigelovii	Ligularia bigelovii	nodding ragwort	Herbaceous
Х	Х	Asteraceae	Senecio crassulus Gray	Senecio crassulus	thickleaf ragwort	Herbaceous
Х	Х	Asteraceae	Senecio triangularis Hook.	Senecio triangularis	arrowleaf ragwort	Herbaceous
х	х	Asteraceae	<i>Taraxacum officinale</i> G.H. Weber ex Wiggers	Taraxacum officinale	common dandelion	Exotic Herbaceous
х	х	Asteraceae	<i>Tetraneuris grandiflora</i> (Torr. & Gray ex Gray) Parker	Tetraneuris grandiflora	graylocks four- nerve daisy	Herbaceous
х	х	Asteraceae	<i>Tonestus pygmaeus</i> (Torr. & Gray) A. Nels.	Tonestus pygmaea	pygmy goldenweed	Herbaceous
х	х	Boraginaceae	<i>Mertensia ciliata</i> (James ex Torr.) G. Don	Mertensia ciliata	tall fringed bluebells	Herbaceous
	х	Boraginaceae	<i>Mertensia lanceolata</i> (Pursh) DC.	Mertensia lanceolata	prairie bluebells	Herbaceous
х	х	Brassicaceae	Arabis drummondii Gray	Boechera drummondii	Drummond's rockcress	Herbaceous
х	х	Brassicaceae	Cardamine cordifolia Gray	Cardamine cordifolia	heartleaf bittercress	Herbaceous
x		Brassicaceae	Descurainia incana (Bernh. ex Fisch. & C.A. Mey.) Dorn ssp. incisa (Engelm.) Kartesz & Gandhi	Descurainia incisa	mountain tansymustard	Graminoid
х		Brassicaceae	<i>Draba aurea</i> Vahl ex Hornem.	Draba aurea	golden draba	Herbaceous
	Х	Brassicaceae	Draba borealis DC.	Draba borealis	boreal draba	Herbaceous
Х		Brassicaceae	Draba crassa Rydb.	Draba crassa	thickleaf draba	Herbaceous
Х	Х	Brassicaceae	Draba crassifolia Graham	Draba crassifolia	snowbed draba	Herbaceous
х		Brassicaceae	Draba graminea Greene	Draba graminea	Rocky Mountain draba	Herbaceous
Х	Х	Brassicaceae	Draba spectabilis Greene	Draba spectabilis	showy draba	Herbaceous
	х	Brassicaceae	<i>Draba streptobrachia</i> R.A. Price	Draba streptobrachia	alpine tundra draba	Herbaceous
x	х	Brassicaceae	<i>Erysimum capitatum</i> (Dougl. ex Hook.) Greene	Erysimum capitatum	sanddune wallflower	Herbaceous
х	х	Brassicaceae	<i>Smelowskia calycina</i> (Steph. ex Willd.) C.A. Mey.	Smelowskia calycina	alpine smelowskia	Herbaceous
х	х	Brassicaceae	Thlaspi montanum L. var. montanum	Noccaea montana	alpine pennycress	Herbaceous
x	х	Caryophyllaceae	<i>Cerastium beeringianum</i> Cham. & Schlecht.	Cerastium beeringianum ssp. earlei	Bering chickweed	Herbaceous
х	х	Caryophyllaceae	<i>Minuartia macrantha</i> (Rydb.) House	Minuartia macrantha	House's stitchwort	Herbaceous
Х	х	Caryophyllaceae	Minuartia obtusiloba (Rydb.) House	Lidia obtusiloba	twinflower sandwort	Herbaceous
	х	Caryophyllaceae	Sagina saginoides (L.) Karst.	Sagina saginoides	arctic pearlwort	Herbaceous
x	x	Caryophyllaceae	Silene acaulis (L.) Jacq. var. subacaulescens (F.N. Williams) Fernald & H. St. John	Silene acaulis ssp. subacaulescens	moss campion	Herbaceous
	х	Caryophyllaceae	Silene drummondii Hook. var. drummondii	Gastrolychnis drummondii	Drummond's campion	Herbaceous
	Х	Caryophyllaceae	Stellaria crassifolia Ehrh.	Stellaria crassifolia	fleshy starwort	Herbaceous
	х	Caryophyllaceae	Stellaria umbellata Turcz. ex Kar. & Kir.	Stellaria umbellata	umbrella starwort	Herbaceous

2004	2009	Family	Plants Database Name	Weber Name	Common Name	Life Form
Х	Х	Crassulaceae	Rhodiola integrifolia Raf.	Rhodiola integrifolia	ledge stonecrop	Herbaceous
х		Crassulaceae	Rhodiola rhodantha (Gray) Jacobsen	Clementsia rhodantha	redpod stonecrop	Herbaceous
Х	х	Crassulaceae	Sedum lanceolatum Torr.	Amerosedum lanceolatum	spearleaf stonecrop	Herbaceous
Х	Х	Cyperaceae	Carex aquatilis Wahlenb.	Carex aquatilis	water sedge	Graminoid
Х		Cyperaceae	Carex ebenea Rydb.	Carex ebenea	ebony sedge	Graminoid
	Х	Cyperaceae	Carex elynoides T. Holm	Carex elynoides	blackroot sedge	Graminoid
х	х	Cyperaceae	Carex geophila Mackenzie	Carex geophila	White Mountain sedge	Graminoid
Х	Х	Cyperaceae	Carex geyeri Boott	Carex geyeri	Geyer's sedge	Graminoid
	Х	Cyperaceae	Carex haydeniana Olney	Carex haydeniana	cloud sedge	Graminoid
х	х	Cyperaceae	<i>Carex heteroneura</i> W. Boott var. <i>chalciolepis</i> (Holm) F.J. Herm.	Carex chalciolepis	Holm sedge	Graminoid
Х		Cyperaceae	Carex microptera Mackenzie	Carex microptera	smallwing sedge	Graminoid
х	х	Cyperaceae	Carex nigricans C.A. Mey.	Carex nigricans	black alpine sedge	Graminoid
Х	Х	Cyperaceae	Carex nova Bailey	Carex nova	black sedge	Graminoid
х		Cyperaceae	Carex praeceptorium Mackenzie	Carex praeceptorum	early sedge	Graminoid
Х		Cyperaceae	Carex rossii Boott	Carex rossii	Ross' sedge	Graminoid
	Х	Cyperaceae	Carex vernacula L.H. Bailey	Carex vernacula	native sedge	Graminoid
х		Dryopteridaceae	Cystopteris fragilis (L.) Bernh.	Cystopteris fragilis	brittle bladderfern	Herbaceous
х	х	Ericaceae	Vaccinium caespitosum Michx.	Vaccinium cespitosum	dwarf bilberry	Shrub
	Х	Ericaceae	Vaccinium myrtillus L.	Vaccinium myrtillus	whortleberry	Shrub
х	Х	Fabaceae	Trifolium attenuatum Greene	Trifolium attenuatum	Rocky Mountain clover	Herbaceous
Х	Х	Fabaceae	<i>Trifolium nanum</i> Torr.	Trifolium nanum	dwarf clover	Herbaceous
Х	Х	Fabaceae	Trifolium parryi Gray	Trifolium parryi	Parry's clover	Herbaceous
х	х	Fabaceae	<i>Salictorum (</i> Greene ex Rydb.) J. Gillett	Trifolium salictorum	Parry's clover	Herbaceous
Х		Gentianaceae	Gentiana algida Pallas	Gentianodes algida	whitish gentian	Herbaceous
	Х	Gentianaceae	Swertia perennis L.	Swertia perennis	felwort	Herbaceous
х	х	Geraniaceae	<i>Geranium richardsonii</i> Fisch. & Trautv.	Geranium richardsonii	Richardson's geranium	Herbaceous
х		Grossulariaceae	Ribes montigenum McClatchie	Ribes montigenum	gooseberry currant	Shrub
	х	Hydrophyllaceae	<i>Hydrophyllum fendleri</i> (A. Gray) A. Heller	Hydrophyllum fendleri	Fendler's waterleaf	Herbaceous
х	х	Hydrophyllaceae	<i>Phacelia sericea</i> (Graham) Gray	Phacelia sericea	silky phacelia	Herbaceous
Х	Х	Juncaceae	Juncus balticus Willd.	Juncus balticus	Baltic rush	Graminoid
Х	Х	Juncaceae	Juncus drummondii E. Mey.	Juncus drummondii	Drummond's rush	Graminoid
	Х	Juncaceae	Juncus saximontanus A. Nelson	Juncus saximontanus	Rocky Mountain rush	Graminoid
х	х	Juncaceae	<i>Luzula parviflora</i> (Ehrh.) Desv.	Luzula parvifolia	smallflowered woodrush	Graminoid
Х	Х	Juncaceae	Luzula spicata (L.) DC.	Luzula spicata	spiked woodrush	Graminoid
Х	Х	Liliaceae	<i>Lloydia serotina</i> (L.) Reichenb.	Lloydia serotina	common alplily	Herbaceous
	Х	Liliaceae	Veratrum tenuipetalum A. Heller	Veratrum tenuipetalum	Colorado false hellebore	Herbaceous

2004	2009	Family	Plants Database Name	Weber Name	Common Name	Life Form
	х	Liliaceae	Zigadenus elegans Pursh ssp. elegans	Anticlea elegans	mountain deathcamas	Herbaceous
х	х	Onagraceae	Chamerion angustifolium (L.) Holub ssp. circumvagum (Mosquin) Hoch	Chamerion denielsii	fireweed	Herbaceous
х	х	Onagraceae	Epilobium hornemannii Reichenb.	Epilobium hornemannii	Hornemann's willowherb	Herbaceous
	х	Orchidaceae	<i>Platanthera aquilonis</i> Sheviak	Habenaria hyperborea	northern green orchid	Herbaceous
Х	Х	Pinaceae	Picea engelmannii Parry ex	Picea engelmannii	Engelmann	Tree
х	х	Poaceae	Bromus lanatipes (Shear) Rydb.	Bromopsis lanatipes	woolly brome	Graminoid
х	х	Poaceae	Calamagrostis canadensis (Michx.) Beauv.	Calamagrostis canadensis	bluejoint	Graminoid
	х	Poaceae	Danthonia intermedia Vasey	Danthonia intermedia	timber oatgrass	Herbaceous
Х	х	Poaceae	Deschampsia caespitosa (L.) Beauv.	Deschampsia cespitosa	tufted hairgrass	Graminoid
x	х	Poaceae	<i>Elymus trachycaulus</i> (Link) Gould ex Shinners	Elymus trachycaulus	slender wheatgrass	Graminoid
х	х	Poaceae	Festuca brachyphylla J.A. Schultes ex J.A. & J.H. Schultes	Festuca brachyphylla	alpine fescue	Herbaceous
Х		Poaceae	Festuca thurberi Vasey	Festuca thurberi	Thurber's fescue	Herbaceous
х	х	Poaceae	Phleum alpinum L.	Phleum commutatum	alpine timothy	Graminoid
Х	Х	Poaceae	Poa alpina L.	Poa alpina	alpine bluegrass	Graminoid
	Х	Poaceae	Poa arctica R. Br.	Poa arctica	arctic bluegrass	Graminoid
х	х	Poaceae	Poa cusickii Vasey	Poa cusickii	Cusick's bluegrass	Graminoid
	х	Poaceae	Poa nemoralis L. ssp. interior (Rydb.) W.A. Weber	Poa nemoralis ssp. Interior	inland bluegrass	Graminoid
	х	Poaceae	Poa pratensis L.	Poa pratensis	Kentucky bluegrass	Exotic Graminoid
	х	Poaceae	Poa reflexa Vasey & Scribn. ex Vasev	Poa reflexa	nodding bluegrass	Graminoid
х	х	Poaceae	Trisetum spicatum (L.) Richter	Trisetum spicatum	spike trisetum	Graminoid
х	х	Polemoniaceae	Phlox condensata (Gray) E. Nels.	Phlox condensata	dwarf phlox	Herbaceous
х		Polemoniaceae	Polemonium confertum Gray	Polemonium confertum	Rocky Mountain Jacob's-ladder	Herbaceous
х	х	Polemoniaceae	Polemonium pulcherrimum Hook.	Polemonium pulcherrimum	Jacob's-ladder	Herbaceous
	х	Polemoniaceae	Polemonium viscosum Nutt.	Polemonium viscosum	sticky polemonium	Herbaceous
Х	х	Polygonaceae	Polygonum bistortoides Pursh	Bistorta bistortoides	American bistort	Herbaceous
х		Portulacaceae	<i>Claytonia megarhiza</i> (Gray) Parry ex S. Wats.	Claytonia megarhiza	alpine springbeauty	Herbaceous
х	Х	Portulacaceae	<i>Lewisia pygmaea</i> (Gray) B.L. Robins.	Oreobrama pygmaea	alpine lewisia	Herbaceous
х	х	Primulaceae	Androsace septentrionalis L.	Androsace septentrionalis	pygmyflower rockjasmine	Herbaceous
Х	Х	Primulaceae	Primula parryi Gray	Primula parryi	Parry's primrose	Herbaceous

2004	2009	Family	Plants Database Name	Weber Name	Common Name	Life Form
х	х	Ranunculaceae	Aconitum columbianum Nutt.	Aconitum columbianum	Columbian monkshood	Herbaceous
х	х	Ranunculaceae	Aquilegia caerulea James	Aquilegia coerulea	Colorado blue columbine	Herbaceous
х	х	Ranunculaceae	Caltha leptosepala DC.	Caltha leptosepala	white marsh marigold	Herbaceous
х	х	Ranunculaceae	<i>Delphinium barbeyi</i> (Huth) Huth	Delphinium barbeyi	subalpine larkspur	Herbaceous
х		Ranunculaceae	Ranunculus eschscholtzii Schlecht.	Ranunculus eschschultzii	Eschscholtz's buttercup	Herbaceous
х	х	Ranunculaceae	<i>Ranunculus inamoenus</i> Greene	Ranunculus inamoenus	graceful buttercup	Herbaceous
х	х	Ranunculaceae	Ranunculus macauleyi Gray	Ranunculus macauleyi	Rocky Mountain buttercup	Herbaceous
	х	Ranunculaceae	Thalictrum alpinum L.	Thalictrum alpinum	alpine meadow- rue	Herbaceous
х	х	Ranunculaceae	<i>Thalictrum fendleri</i> Engelm. ex Gray	Thalictrum fendleri	Fendler's meadow-rue	Herbaceous
х	х	Ranunculaceae	<i>Trollius laxus</i> Salisb. ssp. <i>albiflorus</i> (Gray) A.& D. Löve & Kapoor	Trollius albiflorus	American globeflower	Herbaceous
х		Rosaceae	Dasiphora floribunda (Pursh) Kartesz, comb. nov. ined.	Pentaphylloides floribunda	shrubby cinquefoil	Shrub
х	х	Rosaceae	<i>Fragaria virginiana</i> Duchesne	Fragaria virginiana	Virginia strawberry	Herbaceous
х	х	Rosaceae	Geum rossii (R. Br.) Ser. var. turbinatum (Rydb.) C.L. Hitchc.	Acomastylis rossii ssp turbinata	Ross' avens	Herbaceous
х	х	Rosaceae	Potentilla diversifolia Lehm.	Potentilla diversifolia	varileaf cinquefoil	Herbaceous
	х	Rosaceae	<i>Potentilla ovina</i> Macoun ex J.M. Macoun	Potentilla ovina	sheep cinquefoil	Herbaceous
х	х	Rosaceae	Potentilla pulcherrima Lehm.	Potentilla pulcherrima	beautiful cinquefoil	Herbaceous
	х	Rosaceae	<i>Potentilla subjuga</i> Rydb.	Potentilla subjuga	Colorado cinquefoil	Herbaceous
	х	Rosaceae	Potentilla uniflora Ledeb.	Potentilla uniflora	oneflower cinquefoil	Herbaceous
х	х	Rosaceae	Sibbaldia procumbens L.	Sibbaldia procumbens	creeping sibbaldia	Herbaceous
Х	Х	Salicaceae	Salix arctica Pallas	Salix arctica	arctic willow	Shrub
	Х	Salicaceae	Salix brachycarpa Nutt.	Salix brachycarpa	shortfruit willow	Shrub
х		Salicaceae	Salix drummondiana Barratt ex Hook.	Salix drummondiana	Drummond's willow	Shrub
х	х	Salicaceae	Salix planifolia Pursh	Salix planifolia	diamondleaf willow	Shrub
х	х	Salicaceae	Salix nivalis Hook.	Salix reticulata ssp. nivalis	netleaf willow	Shrub
х	х	Saxifragaceae	<i>Heuchera parvifolia</i> Nutt. ex Torr. & Gray	Heuchera parvifolia	littleleaf alumroot	Herbaceous
	х	Saxifragaceae	Mitella pentandra Hook.	Mitella pentandra	fivestamen miterwort	Herbaceous
	Х	Saxifragaceae	Saxifraga hyperborea R. Br.	Saxifraga hyperborea	pygmy saxifrage	Herbaceous
х	х	Saxifragaceae	Saxifraga odontoloma Piper	Micranthes odontoloma	brook saxifrage	Herbaceous
х		Saxifragaceae	Saxifraga oregana T.J. Howell	Micranthes oregana	Oregon saxifrage	Herbaceous
х		Saxifragaceae	Saxifraga platysepala (Trautv.) Tolm.	Hirculus platysepalus	broadsepal saxifrage	Herbaceous
х	х	Saxifragaceae	<i>Saxifraga rhomboidea</i> Greene	Micranthes rhomboidea	diamondleaf saxifrage	Herbaceous

2004	2009	Family	Plants Database Name	Weber Name	Common Name	Life Form
	Х	Scrophulariaceae	Besseya alpina (A. Gray) Rydb.	Besseya alpina	alpine besseya	Herbaceous
х	х	Scrophulariaceae	<i>Besseya ritteriana</i> (Eastw.) Rydb.	Besseya ritteriana	Ritter's coraldrops	Herbaceous
х	х	Scrophulariaceae	<i>Castilleja haydenii</i> (Gray) Cockerell	Castillja haydenii	Hayden's Indian paintbrush	Herbaceous
х		Scrophulariaceae	<i>Castilleja miniata</i> Dougl. ex Hook.	Castilleja miniata	giant red Indian paintbrush	Herbaceous
х	х	Scrophulariaceae	Castilleja occidentalis Torr.	Castilleja occidentalis	western Indian paintbrush	Herbaceous
х	х	Scrophulariaceae	<i>Castilleja rhexiifolia</i> Rydb.	Castilleja rhexifolia	splitleaf Indian paintbrush	Herbaceous
	х	Scrophulariaceae	Chionophila jamesii Benth.	Chionophila jamesii	Rocky Mountain snowlover	Herbaceous
х	х	Scrophulariaceae	Pedicularis bracteosa Benth.	Pedicularis bracteosa	bracted lousewort	Herbaceous
х	х	Scrophulariaceae	Pedicularis groenlandica Retz.	Pedicularis groenlandica	elephanthead lousewort	Herbaceous
	х	Scrophulariaceae	<i>Pedicularis racemosa</i> Douglas ex Benth.	Pedicularis racemosa	sickletop lousewort	Herbaceous
	х	Scrophulariaceae	<i>Pedicularis sudetica</i> Willd. ssp <i>. scopulorum</i> (A. Gray) Hultén	Pedicularis scopulorum	sudetic lousewort	Herbaceous
х	х	Scrophulariaceae	Penstemon whippleanus Gray	Penstemon whippleanus	Whipple's penstemon	Herbaceous
x	х	Scrophulariaceae	<i>Veronica wormskjoldii</i> Roemer & J.A. Schultes	Veronica nutans	American alpine speedwell	Herbaceous
Х	Х	Selaginellaceae	Selaginella spp.	Selaginella spp.	clubmoss	Clubmoss
Х		Valerianaceae	<i>Valeriana capitata</i> Pallas ex Link	Valeriana capitata	captiate valerian	Herbaceous
Х	Х	Violaceae	Viola labradorica Schrank	Viola labradorica	alpine violet	Herbaceous

Transect 1, Upper Elevational Belt, July 14, 2009

Transect 2, Upper Elevational Belt, July 14, 2009

Transect 3, Upper Elevational Belt, July 14, 2009

Transect 4, Upper Elevational Belt, July 14, 2009

Transect 5, Upper Elevational Belt, July 14, 2009

Transect 6, Upper Elevational Belt, July 14, 2009

Transect 7, Upper Elevational Belt, July 15, 2009

Transect 8, Upper Elevational Belt, July 15, 2009

Transect 9, Upper Elevational Belt, July 15, 2009

Transect 10, Upper Elevational Belt, July 15, 2009

Transect 11, Upper Elevational Belt, July 13, 2009

Transect 12, Upper Elevational Belt, July 10, 2009

Transect 21, Middle Elevational Belt, July 9, 2009

Transect 22, Middle Elevational Belt, July 9, 2009

Transect 23, Middle Elevational Belt, July 9, 2009

Transect 24, Middle Elevational Belt, July 9, 2009

Transect 25, Middle Elevational Belt, July 10, 2009

Transect 26, Middle Elevational Belt, July 10, 2009

Transect 31, Lower Elevational Belt, July 8, 2009

No Transect Photos

Transect 32, Lower Elevational Belt, July 8, 2009

Transect 33, Lower Elevational Belt, July 8, 2009

Transect 34, Lower Elevational Belt, July 8, 2009

Transect 35, Lower Elevational Belt, July 8, 2009

