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Abstract Atmospheric particulate matter (PM) as light‐absorbing particles (LAPs) deposited to snow cover
can result in early onset and rapid snow melting, challenging management of downstream water resources. We
identified LAPs in 38 snow samples (water years 2013–2016) from the mountainous Upper Colorado River
basin by comparing among laboratory‐measured spectral reflectance, chemical, physical, and magnetic
properties. Dust sample reflectance, averaged over the wavelength range of 0.35–2.50 μm, varied by a factor of
1.9 (range, 0.2300–0.4444) and was suppressed mainly by three components: (a) carbonaceous matter measured
as total organic carbon (1.6–22.5 wt. %) including inferred black carbon, natural organic matter, and carbon‐
based synthetic, black road‐tire‐wear particles, (b) dark rock and mineral particles, indicated by amounts of
magnetite (0.11–0.37 wt. %) as their proxy, and (c) ferric oxide minerals identified by reflectance spectroscopy
and magnetic properties. Fundamental compositional differences were associated with different iron oxide
groups defined by dominant hematite, goethite, or magnetite. These differences in iron oxide mineralogy are
attributed to temporally varying source‐area contributions implying strong interannual changes in regional
source behavior, dust‐storm frequency, and (or) transport tracks. Observations of dust‐storm activity in the
western U.S. and particle‐size averages for all samples (median, 25 μm) indicated that regional dust from deserts
dominated mineral‐dust masses. Fugitive contaminants, nevertheless, contributed important amounts of LAPs
from many types of anthropogenic sources.

Plain Language Summary Melting snow and ice on temperate‐zone mountains provide critical
water sources for downstream communities and ecosystems. An important factor contributing to the onset and
rate of snow and ice melt is atmospherically deposited mineral dust and carbon‐rich particles that darken snow
and ice surfaces thereby absorbing light and emitting heat. Mineralogic, chemical, and physical property
investigations of particulate matter (PM) on snow surfaces of the Colorado Rocky Mountains (collected 2013–
2016) revealed three classes of heat‐absorbing particles: (a) dark carbonaceous matter, (b) dark rock and mineral
particles, and (c) very small iron oxide minerals. The many sources of the carbon‐rich particles include (a)
fossil‐fuel and wood combustion, such as soot, (b) black microplastics fromworn road tires, and (c) plant matter,
including pollen. The types and amounts of rock‐derived particles varied greatly from year‐to‐year partly
reflecting variable contributions from different dust‐source regions perhaps caused by varying landscape
conditions in source regions and (or) dust‐transport pathways. Models describing the influence of PM on
snowmelt in the Colorado Rockies might benefit from accounting for year‐to‐year variations in the amounts and
compositions of light‐absorbing particulate matter.

1. Introduction
The timing and rate of temperate zone ice and snowmelt strongly influence the health of downstream, water‐
dependent ecosystems, and human communities (Viviroli et al., 2007). In addition to air temperature, the
amounts and types of light‐absorbing particulate (LAP) matter deposited from the atmosphere are important
controls, by emitting heat, on snow and ice melt (Di Mauro et al., 2019; Painter et al., 2012a, 2012b). An
additional control is snow metamorphism producing rough surface textures.
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An important class of LAPs comprises carbonaceous, non‐mineral matter (including black carbon, BC), having
numerous origins (e.g., Bond & Bergstrom, 2006; Bond et al., 2013; Flanner et al., 2007, 2009, 2012). Many
studies have examined the combined effects of BC, specifically, and mineral dust, generally, on snow cover
albedo and related snow melt (e.g., Dang et al., 2017; Doherty et al., 2013; Dumont et al., 2020; Gleason
et al., 2022; Hadley et al., 2010; He, 2022; He et al., 2019; ; Kaspari et al., 2014, 2015; Nagorski et al., 2019;
Oaida et al., 2015; Rahimi et al., 2020; Sarangi et al., 2020; Skiles et al., 2018; Skiles & Painter, 2018; Wang
et al., 2013; Wu et al., 2018; Yasunari et al., 2014; Y. Zhang, Goldstein, et al., 2018; Zhao et al., 2014; Zhong
et al., 2021). Relatively few, however, have systematically evaluated specific dust minerals for their effects on
snow melt (e.g., Axson et al., 2016; Di Mauro et al., 2019; Kaspari et al., 2014), examples of which are dark rock
(e.g., basalt) and mineral (e.g., magnetite) particles having strong heat‐absorbing properties (Clark, 1983; Kokaly
et al., 2017; Reynolds, Goldstein, et al., 2014, 2020). Another class of dust‐mineral LAPs comprises the ferric
oxide minerals: hematite and goethite (Alfaro et al., 2004; Derimian et al., 2008; Englebrecht et al., 2016; Lafon
et al., 2004, 2006; Moosmüller et al., 2012; Sokolik et al., 2001; Zhang et al., 2015). Further, particles of
microplastics (defined as plastics less than 5 mm in any dimension) comprise a recently recognized class of
carbon‐based LAP matter on cryogenic surfaces (e.g., Allen et al., 2019, 2022; Bergmann et al., 2019; Brahney
et al., 2020, 2021; Evangeliou et al., 2020; Ming & Wang, 2021). Examination of dry‐ and (or) wet‐deposition
samples has revealed the occurrences of microplastics in many remote locations in the American West (Brah-
ney et al., 2020; Wetherbee et al., 2019).

Recent research has demonstrated the deleterious effects of air‐deposited particulate matter (PM) on the timing
and rate of snowmelt in the Upper Colorado River basin, and the challenges that these effects have on water‐
resource management throughout the region (Deems et al., 2013; Landry et al., 2014; Naple et al., 2024;
Painter et al., 2007, 2010, 2012a, 2012b, 2018, 2018; Skiles et al., 2012, 2015, 2017; Skiles & Painter, 2016, 2017;
Udall, 2013). Relative to pre‐European settlement (about 1860 CE), a combination of measurements and
modeling points to direct effects of dust loading on the reduction of snow cover and the onset of snowmelt by 25–
51 days (Painter et al., 2007, 2010, 2018; Skiles et al., 2012). All such melting puts water into downstream storage
earlier than is desirable because early, heavy pulses of runoff sometimes must be quickly passed through storage
reservoirs. Under these conditions, total available water supply is lessened during the hottest and driest parts of
summer when water is most needed. Seasonal snow in the Colorado River basin provides most of the water for
heavily populated drylands (about 44 million inhabitants) of the American Southwest and parts of Mexico
through which the Colorado River flows.

Major foci of this study were (a) to identify LAPs in snow within much of the UCRB by evaluating interrelations
among laboratory‐measured spectral reflectance, mineralogic, textural, and chemical properties, (b) to determine
variations in LAP amounts over time and space, and (c) to assess causes for their variations. The data on LAPs and
their effects on spectral reflectance, after further translation to albedo (not done here), can be applied to snow
hydrologic modeling when evaluating interannual changes in water‐resource availability within this large
catchment.

2. Samples and Methods
2.1. Sample Collection and Preparation

Samples of dust‐laden snow surfaces were collected at repeat study sites during ongoing studies of snow hy-
drologic conditions across part of the UCRB (Figure 1; Table 1). The samples, from 14 sites distributed across an
area of about 60,000 km2, were collected over four years from water year 2013 (WY13) through WY16. For
example, WY16 began 1 October 2015 and ended 30 September 2016. Collections were made late during the melt
season attempting to capture the last remaining layer of dust–the All Layers Merged (ALM) samples–after in-
dividual, previously wind‐deposited dust layers had coalesced at the snow surface. Several times, snow had
melted completely before sampling was possible, so that some sites lacked an ALM sample for a given water year
(Table 1). In all, 38 samples were taken, including four from the Swamp Angel Study Plot (SASP) site for which
results were previously described (Reynolds et al., 2020) and are reported herein for completeness. Site settings
and underlying geologic substrates are listed in Table S1 in Supporting Information S1.

Samples were collected by scraping the top 2–5 cm of the dust‐laden snow surface with an aluminum shovel. The
ALM samples were taken to maximize amounts of PM; thus, sample mass did not indicate dust flux. The samples
were placed in plastic carboys and shipped to U.S. Geological Survey laboratories in Denver, Colorado where
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water from melted snow with dust was evaporated at 45‐degrees C. Visible fragments of plant matter, such as
conifer needles, were removed by hand. Each dried sample was divided so that all measurements were made on
splits from the same sample.

2.2. Reflectance

Reflectance spectra were measured on dried samples in aluminum cups using an Analytical Spectral Devices
(ASD) Inc. FieldSpec3 spectrometer, covering the wavelength range of 0.35–2.50 μm in 2,151 channels. The
spectrometer is calibrated for wavelength position and radiance by the manufacturer on an annual basis. Spectral
reflectance was measured relative to a Labsphere Spectralon® 99% reflectance reference panel. The average
reflectance spectrum for each sample was converted to absolute reflectance, adjusting for the absorption prop-
erties of the reference panel (Kokaly & Skidmore, 2015). Reflectance measurements of bulk samples were
expressed as the averages over (a) the total solar energy spectrum (0.35–2.50 μm; Rtot) and (b) the visible portion
of the spectrum (0.4–0.7 μm; Rvis). Sources of uncertainty include the measurement protocol and instrumentation

Figure 1. Map showing locations of sampling sites within the UCRB. Abbreviations explained in Table 1. Marker colors
indicate groups by location: gray, southwest; cyan, central; red, east; black, north. Dashed line denotes the Continental
Divide. Latitudes, north; longitudes, west.
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(sample loading, illumination, and spectrometer stability). To assess the uncertainty related to the measurement
protocol, nine measurements of an internal standard were made across five measurement sessions (August 2014 to
July 2016). The mean Rtot for the internal standard was 0.5230 (standard deviation = 0.0083). The largest un-
certainty (95% confidence interval) for the Spectralon panel reflectance propagated to a 0.0127 uncertainty in
reflectance for the internal standard. Ferric oxide minerals were identified by analyzing reflectance spectra using
the Material Identification and Characterization Algorithm (MICA), a module of the PRISM software system
(Kokaly, 2011), which uses continuum removal to isolate diagnostic absorption features and linear regression to
compare spectral features. In this way, the spectra of the samples were compared with reference spectra of
minerals and other materials (Kokaly et al., 2017). The MICA analysis computes a fit value, ranging from 0 to 1,
between the sample spectrum and each reference material (Kokaly, 2011), with “best fit” determined by the
highest fit value.

2.3. Magnetic Properties and Iron Mineralogy

Magnetic measurements were made on bulk dried sediment packed into 3.2‐cm3 plastic cubes and normalized for
sample mass. Remanent magnetization was measured using a 90‐Hz spinner magnetometer with a sensitivity of
10− 5 Am− 1. As part of the initial setup for each batch of samples, a calibration sample was run, and then the empty
spinner as well as an empty cube holder were measured. A measure of the quantity of magnetite sufficiently large
(magnetic grain size greater than about 30 nm) to carry remanence is referred to as isothermal remanent
magnetization (IRM0.3T), the magnetization acquired by a sample after exposure to a 0.3‐T (T) magnetic field.
Hard IRM (hard isothermal remanent magnetization (HIRM)), a measure of high‐coercivity ferric oxide minerals
(hematite and goethite), is calculated (IRM1.2T‐IRM0.3T)/2. A measure of magnetic grain size for magnetite is the
ratio of anhysteretic remanent magnetization (ARM) to IRM0.3T (ARM/IRM). Magnetic grain size, which may
not indicate the physical size of a magnetite particle, reflects the magnetic domain structure of magnetic minerals,
thereby providing information about origins of these minerals. The values of ARM/IRM increase with decrease in
magnetic grain size, and it is particularly sensitive to single domain and small pseudo‐single domain (PSD) sizes
(∼30–1,000 nm). Anhysteretic remanent magnetization was imparted in a DC induction of 0.1 mT in the presence
of a decaying alternating induction from 100 to 0 mT. Magnetic susceptibility (X ) was determined in a 0.1 mT
induction at 600 Hz using a susceptometer with a sensitivity better than 4 × 10− 7 m3 kg− 1. A subset of 20 samples
was analyzed for saturation magnetization (Ms) using a vibrating magnetometer (VSM, Lake Shore model 8,600).
Weight percent magnetite was determined as sample Ms/92 Am2 kg− 1 × 100. Types of iron minerals and their
hosts were observed in bulk samples using a stereomicroscope and in polished grain mounts of magnetic grains
using a petrographic microscope at 400x under reflected light.

Table 1
Sites and Their Locations (Latitudes, North; Longitudes, West), Site Abbreviations in Figure 1, and Water Years (WY) of
Collection

Site Abbrv. Latitude Longitude Elevation (m) Location WY

Berthoud Pass Berth 39.8033 − 105.7776 3,444 East 13–16

Grand Mesa GM 39.0508 − 108.0613 3,240 Central 13–16

Grizzly Peak GrP 39.6471 − 105.8689 3,383 East 13,14,16

Hoosier Pass HP 39.3590 − 106.0582 3,474 East 13,14,16

Independence Pass IndP 39.1081 − 106.5644 3,690 Central 14

Kebler Pass KebP 38.84976 − 107.1003 3,058 Central 15

Loveland Pass LovP 39.66337 − 105.8791 3,658 East 15

McClure Pass McClP 39.1294 − 107.2885 2,896 Central 13,14,16

Park Cone PC 38.8194 − 106.5902 2,926 Central 13,14,16

Rabbit Ears Pass REP 40.3683 − 106.7388 2,865 North 13,14

Swamp Angel Study Plot SASP 37.9069 − 107.7114 3,371 Southwest 13–16

Spring Creek Pass SCP 37.9304 − 107.1653 3,292 Southwest 13,14,16

Willow Creek Pass WiCrP 40.3481 − 106.0953 2,908 North 13,14

Wolf Creek Pass WoCrP 37.4838 − 106.7955 3,336 Southwest 13–16
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2.4. Carbonaceous Matter

Carbon content was measured with an Elementar Soli total organic carbon (TOC) Cube (Elementar Analy-
sensysteme GmbH, Langenselbold, Germany) under a gas‐switching method with temperature‐dependent‐
oxidation. Dried samples were weighed in ceramic crucibles and loaded into the instrument autosampler. Dur-
ing the measurement of each sample, the temperature of the combustion oven was first ramped to 400°C in an
oxygen environment, and the resulting CO2 was measured on the Soli TOC Cube near‐infrared detector. The
carbon oxidized and measured in this step is considered organic carbon (OC400). Next, the carrier gas was
switched from oxygen to nitrogen and the oven temperature ramped to 900°C. The resulting CO2 corresponded to
total inorganic carbon (TIC). As a last step, the carrier gas was switched back to oxygen with the oven remaining
at 900°C, and any remaining carbon—the residual oxidizable carbon (ROC)—was converted to CO2 and
measured. With this method, the total carbon (TC) content of the sample is the sum of the three carbon com-
ponents measured (TC = OC400 + TIC + ROC). The total organic carbon (TOC) content of the sample is the sum
of OC400 and ROC (TOC = OC400 + ROC). Total organic carbon was measured on solid‐phase samples. Dis-
solved organic carbon was not measured, as any dissolved carbon is retained in the solid‐phase after evaporation.
Quality protocol included running a suite of control samples following every 10 unknowns. Control samples
consisted of blanks, known standards (accuracy), and duplicated unknowns (precision). Based on these control
samples, our analyses were accurate to within 0.1% of the accepted values (TC ± 0.08%, TOC ± 0.08%, and
TIC ± 0.02%), and the duplicate precision was <±3% with both metrics reflecting relative deviation not absolute
concentrations. Unknown sample concentrations were corrected for laboratory blanks by subtracting the mean
blank peak area (CO2) from each sample peak area prior to calculating sample concentrations. The mean peak
area of sample blanks was less than 0.01% of mean sample peak areas. Values of magnetic properties and
elemental amounts were recalculated from initial values on an organic‐matter free basis to correct for the dilution
of bulk dust by organic matter estimated by multiplying TOC wt % by the standard factor of 1.72. This necessary
adjustment introduced some unknown degree of uncertainty because not all TOC contained the same amounts of
non‐carbon elements represented in the standard factor.

2.5. Major and Trace Elemental Chemistry

Elemental amounts were determined following four acid digestion (a mixture of hydrochloric, nitric, perchloric,
and hydrofluoric acids) by analyzing the resulting solution by inductively coupled plasma—atomic emissions
spectrometry (ICP‐AES) for Al, Fe, Ca, K, Mg, Na, P, Ti, Mn, and Nd using measurement protocols of standards
and blanks by Briggs (2002) and inductively coupled plasma—mass spectrometry (ICP‐MS) for the other re-
ported elements using measurement protocols of standards and blanks by Briggs and Meier (2002) and Wolf and
Adams (2015).

2.6. Microscopy

Observations of samples were made under a Keyence VX‐7000 stereomicroscope at 80–700x and a scanning
electron microscope (SEM; FEI Quanta 450 FEG) equipped with an energy‐dispersive spectrometer (EDS;
Oxford Instruments XMaxN 50). Operating conditions for secondary and backscatter‐electron imaging and EDS
collection were variable depending on the particle but resulted in imaging resolutions of 50 nm and enabled
detection of elements from 0.2 to 9 KeV (C to Zn Kα). Samples were prepared for SEM‐EDS examination by
placing hand‐picked particles on adhesive SEM‐stub surfaces that were then lightly coated with carbon prior to
examination.

2.7. Particle‐Size Analysis

Particle sizes between 0.06 and 2,000 μm were measured using laser‐diffraction methods (Malvern Mastersizer
2000) and reported as volume percent. Prior to analysis, samples were prepared by digestion in 30% H2O2 to
remove organic matter and deflocculated in a Na‐hexametaphosphate solution.

3. Results
The results are considered by iron oxide mineralogy, water year, and site location as primary variables to assess
the causes of variations in reflectance. For locations, the sampling sites were divided into four geographic sectors
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as indicated in Figure 1 and Table 1: southwest, central, east, and north. These designations were drawn before
examining data and remained unchanged.

3.1. Reflectance

Total reflectance (Rtot) of the ALM samples averaged 0.3574 (standard deviation (sd), 0.0548) and varied by a
factor of 1.9 (range, 0.2300–0.4444); visible reflectance (Rvis) averaged 0.1755 (sd, 0.0246) and varied by a
factor of 1.6 (range, 0.1297–0.2082) (Table 2). Total reflectance varied significantly for the WY13 versus WYs
14, 15, and 16 samples (P < 0.001) as well as for WY15 versus WY16 (P = 0.011; one‐way ANOVA, Holm‐
Sidak‐test pair‐wise comparisons). Highest average Rtot values were for WY13 (0.4191) and lowest for WY
15 (0.2851) (Figure 2; Table 2). The highest average Rvis, also for WY13, was 0.1988, and lowest Rvis average
values were 0.1578 (WY14) and 0.1604 (WY15).

Overall, Rtot and Rvis values lacked tight correspondence (r2 = 0.57; Figure 3), and four clusters represented the
four WY sets: The WY15‐ and 16‐sample values defined two partly overlapping trends, WY14 values defined a
different but nearly parallel trend, and WY13 values clumped in a field of relatively high Rtot and Rvis. The data
fields and trends revealed interannual variations caused by fundamentally different compositions of PM as
amplified in the following. Reflectance values varied without significant differences among the four regions.

3.2. Iron Oxide Mineralogy

Each sample contained ferric oxide minerals and magnetite on the combined basis of reflectance spectroscopy,
magnetic properties, and microscopy. The samples were divided into three iron‐oxide mineral groups—goethite,
hematite, and magnetite (Table 2). The goethite and hematite groups were discerned on the sole presence or
dominance of either mineral identified in reflectance spectra. The goethite group consisted of 21 samples of which
seven contained lesser hematite, and the hematite group consisted of 10 samples of which eight contained lesser
goethite. Thus, goethite and hematite were noted together in 15 of the 31 samples having spectrally identifiable Fe
oxide. The magnetite group comprised seven samples, spectrally indeterminate for ferric oxide mineral, without a
priori regard for magnetite abundance in them.

Samples of the three mineral groups were distributed unevenly across time and space (Figure 4). Goethite
dominated in all WY13 and in most WY15 samples. Hematite dominated in the WY14 samples albeit with
goethite as secondary in most. The magnetite‐group samples made up the majority of WY16 samples. By
location, goethite was present in all geographic groups, dominating in the southwest group, whereas hematite
prevailed in the central group. Most magnetite‐group samples appeared in the east group and none in the north
group.

Coincidentally, the magnetite‐group samples had significantly higher amounts of magnetite (P < 0.001 onmedian
values) on the basis of IRM and magnetic susceptibility compared with ferric oxide‐group samples (Figure 5). In
the subset of 20 samples measured for Ms, magnetite ranged 0.11–0.37 wt. % (mean = 0.26 wt. %) in the six
magnetite‐group samples and 0.05–0.29 wt. % (mean= 0.12 wt. %) in the others (Table 2). By location, respective
IRM and HIRMmagnitudes mostly overlapped. The values of ARM/IRMwere significantly lower (P < 0.05) for
the magnetite‐group samples compared to the identical values for the goethite and hematite groups, indicating the
presence of larger magnetic grain size (reflecting magnetic domain state) in these relatively magnetite‐rich
samples (Figure 5).

Considering all samples, IRM roughly corresponded with HIRM (r2 = 0.39), as expected because of the close
genetic associations between ferric oxide and magnetite in many types of igneous rocks and sediments derived
from them. The IRM‐HIRM relations, however, were distinct among the hematite, goethite, and magnetite
groups. In the hematite group, ferric oxide (HIRM) corresponded with magnetite (IRM, r2 = 0.87) much more
tightly than in the goethite‐group (r2 = 0.55) and with steeper slope (Figure 6).

3.3. Carbonaceous Matter

Total organic carbon ranged 1.61–22.48 wt. % (mean, 7.80 wt. %, sd, 5.81 wt. %; Table 2; Table S2 in Supporting
Information S1). The magnetite‐group samples together possessed more TOC than did the goethite‐ and hematite‐
group samples (Figure 7a). By water year, TOC amounts were relatively low in theWY13 andWY14 samples and
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Table 2
List of Samples by Site, Year of Collection, and Location With Associated Properties

Site WY LOC FeOx1 FeOx2 Rtot Rvis TOC wt% Magnetite wt% Xlf IRM HIRM ARM/IRM JD

Berthoud Pass 13 E Gt 0.44441 0.20646 1.97 5.4E− 07 6.2E− 03 4.5E− 04 0.026 141

Grand Mesa 13 C Gt Ht 0.41155 0.20745 4.02 0.10 8.0E− 07 1.0E− 02 6.5E− 04 0.022 141

Grizzly Peak 13 E Gt 0.40206 0.20484 3.00 0.14 9.0E− 07 9.9E− 03 4.7E− 04 0.022 141

Hoosier Pass 13 E Gt 0.39715 0.17905 2.27 1.2E− 06 1.4E− 02 5.4E− 04 0.023 142

McClure Pass 13 C Gt 0.41026 0.20563 10.91 0.12 8.7E− 07 1.1E− 02 6.8E− 04 0.019 120

Park Cone 13 C Gt 0.40438 0.19613 5.81 6.6E− 07 7.9E− 03 4.0E− 04 0.021 120

Rabbit Ears Pass 13 N Gt Ht 0.39759 0.17952 2.55 0.10 8.0E− 07 1.0E− 02 7.3E− 04 0.026 131

SASP 13 SW Gt 0.44188 0.20668 1.87 0.05 5.2E− 07 6.1E− 03 4.5E− 04 0.020 133

Spring Creek Pass 13 SW Gt Ht 0.42820 0.20138 3.14 5.6E− 07 6.9E− 03 5.4E− 04 0.018 121

Willow Creek Pass 13 N Gt Ht 0.44061 0.20287 2.51 5.4E− 07 7.2E− 03 7.6E− 04 0.031 130

Wolf Creek Pass 13 SW Gt 0.43255 0.19649 3.21 7.7E− 07 9.4E− 03 1.6E− 04 0.017 121

Berthoud Pass 14 E Gt Ht 0.32448 0.14412 6.29 8.4E− 07 1.2E− 02 7.4E− 04 0.016 154

Grand Mesa 14 C Ht Gt 0.31104 0.13194 4.16 0.06 4.6E− 07 6.6E− 03 7.6E− 04 0.020 153

Grizzly Peak 14 E Gt Ht 0.33662 0.16092 4.31 7.4E− 07 6.6E− 03 3.2E− 04 0.013 154

Hoosier Pass 14 E Ht Gt 0.38948 0.18039 4.06 3.3E− 07 3.9E− 03 3.9E− 04 0.019 154

Independence Pass 14 C Ht Gt 0.42968 0.18761 1.61 0.06 2.4E− 07 3.0E− 03 4.2E− 04 0.022 153

McClure Pass 14 C Ht Gt 0.36006 0.15561 8.53 5.6E− 07 7.2E− 03 6.8E− 04 0.020 116

Park Cone 14 C Ht Gt 0.34704 0.15127 4.01 0.06 2.0E− 07 2.7E− 03 3.3E− 04 0.022 113

Rabbit Ears Pass 14 N Gt 0.33873 0.16086 18.24 1.1E− 06 1.5E− 02 7.6E− 04 0.019 155

SASP 14 SW Ht Gt 0.40685 0.17807 3.40 2.9E− 07 6.5E− 03 6.7E− 04 0.019 148

Spring Creek Pass 14 SW Ht Gt 0.38172 0.15490 3.11 4.8E− 07 7.0E− 03 6.8E− 04 0.020 114

Willow Creek Pass 14 N Gt Ht 0.30452 0.13324 5.37 5.1E− 07 7.1E− 03 6.8E− 04 0.024 115

Wolf Creek Pass 14 SW Gt 0.32822 0.15515 5.83 6.6E− 07 9.3E− 03 5.4E− 04 0.022 137

Berthoud Pass 15 E Mt 0.22998 0.12974 14.28 0.24 1.8E− 06 2.3E− 02 6.5E− 04 0.013 166

Grand Mesa 15 C Gt 0.27105 0.14618 16.63 0.14 1.0E− 06 1.7E− 02 9.1E− 04 0.019 152

Kebler Pass 15 C Gt 0.29238 0.16401 16.16 0.29 2.1E− 06 2.9E− 02 1.1E− 03 0.017 152

Loveland Pass 15 E Mt 0.29655 0.18478 8.25 1.9E− 06 2.1E− 02 5.9E− 04 0.016 166

SASP 15 SW Gt 0.30936 0.17342 11.04 0.17 1.3E− 06 1.9E− 02 1.0E− 03 0.018 155

Wolf Creek Pass 15 SW Gt 0.31104 0.16415 13.58 0.21 2.7E− 06 3.7E− 02 1.1E− 03 0.014 152

Berthoud Pass 16 E Mt 0.32818 0.19399 12.44 0.26 1.8E− 06 2.3E− 02 8.3E− 04 0.017 153

Grand Mesa 16 C Ht 0.37458 0.20149 8.52 0.10 6.9E− 07 9.7E− 03 7.9E− 04 0.019 164

Grizzly Peak 16 E Mt 0.35829 0.20819 5.50 0.37 2.6E− 06 2.1E− 02 5.3E− 04 0.011 153

Hoosier Pass 16 E Mt 0.31513 0.17510 9.15 0.26 1.9E− 06 2.2E− 02 8.6E− 04 0.018 153

McClure Pass 16 C Ht 0.33776 0.18492 20.50 0.14 1.0E− 06 1.2E− 02 9.4E− 04 0.017 134

Park Cone 16 C Mt 0.29409 0.15111 17.40 0.11 9.1E− 07 1.2E− 02 1.0E− 03 0.020 134

SASP 16 SW Gt 0.33969 0.18506 5.04 7.0E− 07 9.4E− 03 8.8E− 04 0.021 164

Spring Creek Pass 16 SW Ht Gt 0.36671 0.19242 5.23 6.4E− 07 8.2E− 03 9.0E− 04 0.021 134

Wolf Creek Pass 16 SW Mt 0.28809 0.13289 22.48 0.33 2.2E− 06 2.9E− 02 1.1E− 03 0.015 164

Note. Water year (WY) of collection; location group (LOC; E, east; C, central; N, north; SW, southwest). Fe Ox 1, dominant iron oxide mineral: ferric oxide
(Gt = goethite, Ht = hematite) or magnetite (Mt) in the absence of ferric oxide identification. Fe Ox 2, subsidiary iron oxide from reflectance spectroscopy. Rtot,
reflectance averaged over the total spectrum (0.35–2.5 μm); Rvis, reflectance averaged over the visible portion of a spectrum (0.4–0.7 μm). TOC, total organic carbon
(wt. %); Magnetite (wt. %) from saturation magnetization, blank cells, not analyzed; Xlf, low‐frequency magnetic susceptibility in m3 kg− 1; IRM, HIRM, and ARM
(isothermal remanent magnetization, hard IRM, and anhysteretic RM, respectively) in Am2 kg− 1. JD, Julian day of sample collection.
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high in the WY15 and 16 samples (Figure 7b). Among the location groups, TOC amounts varied greatly over the
study period (Figure 7c).

As observed under stereomicroscopy and SEM‐EDS, each sample contained numerous black particles of various
shapes, sizes, metal composition, and textures (e.g., Figure S1 in Supporting Information S1). Some samples
contained plant matter, including coniferous pollen, too small to have been removed by hand. Also found in each
sample were fibers and fragments that by shape, size, and color were identical to particles described and illustrated

by others as microplastics (e.g., Allen et al., 2019; Bergmann et al., 2019;
Brahney et al., 2020; Cowger et al., 2020; Dris et al., 2016; Hidalgo‐Ruz
et al., 2012; Wetherbee et al., 2019; Yang et al., 2023; Zambrano
et al., 2019). Fibers, typically 10–100s μm in length and 5–10 μm in width,
were variously colored (cloudy white/translucent, red/pink, green, blue,
black, or banded in different colors). Twisted ribbons characterized the shapes
of many fibers of all colors (see Xiao et al., 2023). Black PM was intimately
associated with a few of the fibers either as thin (<10 μm‐thick) coatings on
fibers or within clusters of fibers, substances interpreted as road‐tire‐wear
particles because identical particles have been found in road‐surface sam-
ples and in shredded tires (Reynolds et al., 2024). Because of the possibility of
contamination by white plastic particles—sample matter contacted white
plastic during shipment and drying in the laboratory—we did not attempt to
quantify the amount of microplastics.

3.4. Major and Trace Element Chemistry

Most major elements exhibited some degree of mutual affinity (Tables S3 and
S4 in Supporting Information S1). The correspondences of aluminum (Al)

Figure 2. Box plots of average reflectance by water year and location over the total (a), (b) and visible (c), (d) parts of
reflectanace spectra. In this and following box plots, solid lines represent median values, the ends of the boxes define the 25th
and 75th percentiles, and the error bars define the 10th and 90th percentiles. Dots indicate outliers.

Figure 3. Plot of reflectance by water year; total, average over full spectrum
(0.35–2.50 μm); visible, average over the visible portion of the spectrum
(0.4–0.7 μm). Each marker represents a separate sample.

Journal of Geophysical Research: Atmospheres 10.1029/2024JD041676
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with iron (Fe), potassium (K), sodium (Na), and titanium (Ti) suggested their associations in common lithogenic
dust minerals, such as clays and rock fragments. Calcium correlated only with Mg, but weakly so, in an expected
association for Mg‐bearing calcite and dolomite. Overall, most major‐element amounts (Al, Fe, K, Na, Ti, and
Mg) ranged by factors of 1.5–2.0 similar to factor ranges for Rtot and Rvis (Table S4 in Supporting
Information S1).

Figure 4. Number of samples (frequency) of iron oxide minerals on the basis of best‐fit identifications from reflectance
spectra and subdominant identifications (for hematite in brackets, goethite in parentheses) or magnetite in the absence of
spectral identification of a dominant ferric oxide.

Figure 5. Box plots showing values of isothermal remanent magnetization (IRM), hard IRM (HIRM), and the anhysteretic remanent magnetization (ARM)/IRM ratio by
groups; iron oxide (left panels), water years (WY, middle panels), and locations (right panels).
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Only the average amounts of P and K, but barely, exceeded their respective
average amounts for rocks of the upper continental crust (UCC; Rudnick &
Gao, 2003; Table S5 in Supporting Information S1). The low relative amounts
of most elements might have resulted from dilution by silica (not analyzed)
especially in quartz in the weathered mature sedimentary rocks of the Col-
orado Plateau that provide numerous dust sources for UCRB dust (Reynolds
et al., 2020).

Some major‐element amounts differed within iron oxide mineral, water‐year,
and location groups. The magnetite‐group samples possessed relatively high
amounts of K, Na, P, Al, and Fe. Conspicuously low amounts of Al and Fe in
the hematite‐group samples were tightly correlated (r2 = 0.98), whereas
higher amounts of Al and Fe were less correlated in the goethite group
(r2 = 0.29) and the magnetite‐group (r2 = 0.61; Figure S2a in Supporting
Information S1). Most major‐element abundances varied greatly among water
years, but Fe contents were an exception (Figure S3 in Supporting Informa-
tion S1). Water‐year‐15 samples contained high amounts of Al, K, Na, and P;
Na and P were also relatively abundant in WY16 samples. Calcium amounts
were relatively high in WY13 and 14 samples possibly because of their early
collection days as discussed in Section 4.2. Ranges in Ti amounts (not shown)

were similar across water years, locations, and iron‐oxide groups. Large elemental variations typically existed
within a location group thereby producing substantial overlap for a particular element among locations except for
Fe, which separated into two groups: Low‐iron amounts were characteristic of southwest and central sites
compared with high iron in samples from the east and north sites. Aluminum amounts were relatively high in the
east and north samples, such that a plot of Al versus Fe highlights the chemical differences between the southwest‐
plus‐central group and the east‐plus‐north group (Figure S2b in Supporting Information S1).

Trace elements command attention because many of them hold clues to the origins of several LAPs (Carling
et al., 2012, 2015; Clements et al., 2014; Dastrup et al., 2018; Goodman et al., 2019; Munroe et al., 2014;
Reynolds, Goldstein, et al., 2014, 2020). Generally, wide ranging abundances of trace elements occurred in a
variety of associations, some of them strongly correlated (Table S6 in Supporting Information S1). Average
amounts of eight trace elements (Zn, As, Pb, Cu, Bi, Sb, Mo, and Cd in increasing order) were much larger than
their respective average values in UCC rocks, average amounts of another 11 trace elements matched or were
slightly greater than their respective UCC averages, and average amounts of nine were less than their respective
UCC averages (Figure 8; Table S7 in Supporting Information S1).

The magnetite group possessed significantly greater amounts of nearly all trace elements relative to the goethite‐
and hematite‐sample groups, with As, Cs, and Li as exceptions to this tendency (Figure 9 and S4). Goethite‐group
samples were enriched in trace elements compared with the hematite‐group samples except for As, Cd, Li, Mn,
Nd, and Y. The WY15 and most WY16 samples possessed relatively elevated trace‐element amounts (Figure 9
and Figure S4 in Supporting Information S1).

Figure 6. Plot of hard isothermal remanent magnetization (HIRM) versus
IRM (overall r2 = 0.39). Hematite‐group samples obtained r2 = 0.87;
goethite‐group samples, r2 = 0.55. The magnetite samples lacked obvious
correspondence in IRM and HIRM.

Figure 7. Total organic carbon in wt. % by (a) dominant iron oxide, (b) water year (WY), and (c) location.

Journal of Geophysical Research: Atmospheres 10.1029/2024JD041676
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3.5. Particle‐Size Distributions

Size distributions of PM overall indicated dominant silt (73.8 vol. %; sd, 4.6
vol. %) expressed similarly in PM63 (silt plus clay; mean, 85.7 vol. %; sd, 5.8
vol. %) and median size (mean, 24.8 μm; sd, 5.6 μm) (Table S8 in Supporting
Information S1). Amounts of PM2.5, PM10, PM20, and sand averaged 8.2,
25.0, 43.0, 14.3 vol. %, respectively. Importantly, thus, the mean PM20‐10

amount was 18% vol. %, and the mean PM63‐10 amount was 60.7 vol. %.
The iron oxide mineral groups exhibited some large differences in texture
(Figure 10). The goethite‐group samples had finest textures with respect to
PM2.5, PM10, PM63, sand, and median grain size, and the magnetite‐group
samples possessed relatively coarse texture in the silt, PM63, and sand frac-
tions. Nevertheless, hematite‐group samples had the lowest average PM10

amounts (21% vol. %) and highest median grain size (29 μm).

Interannual variations in PSD parameters were small (Figure S5 in Supporting
Information S1). TheWY13 and 15 layers, however, were slightly enriched in
PM10 and PM20 (not shown) roughly expressed also in relatively low median
particle size (Table S8 in Supporting Information S1). These PSD‐water year
relations can be at least partly attributed to the dominance of relatively fine‐
grained goethite‐group samples in the WY13 and 15 suites. There were no
significant water‐year differences within the PM2.5‐size class. Among loca-
tions, the four north‐site samples were relatively fine‐grained especially

expressed as small median particle size (mean, 18.8 μm; sd, 1.7 μm), high percentages of PM2.5, PM10, and PM63

as well as low percentages of sand (Figure S6 in Supporting Information S1). The east‐group samples exhibited
significantly highest amounts of sand along with correspondingly low amounts of silt and PM63. Few associations
existed among PSD parameters and trace elements, although relatively fine‐grained textures expressed in median
grain size (<27 μm) and PM10–2.5 (>15% vol. %) but not PM2.5 tended to contain relatively high amounts of Pb,
Cu, As, Co, and Be (Figure S7 in Supporting Information S1).

4. Discussion
4.1. Relations Among Spectral, Mineralogic, Chemical, and Textural Properties

In the following, reflectance values are compared with iron oxide mineralogy, magnetic properties, chemical
properties, and particle sizes. Relatively low Rtot characterized the magnetite‐group samples compared with
those of the goethite and hematite groups (P = 0.009 and 0.014, respectively, one‐way ANOVA, Holm‐Sidak
pairwise comparisons) for which Rtot values were statistically indistinct (Figure 11). The iron oxide groups
had wide and similar ranges in Rvis. The observation that the magnetite‐group samples yielded significantly
lower values of Rtot but not of Rvis indicates that some components in these samples suppressed reflectance over
the full solar‐energy spectrum without prevalent effect on the visible portion.

Relatively low Rtot corresponded with relatively high IRM (magnetite amounts) and TOC (r2 = 0.37 and
r2 = 0.47, respectively; Figure 12). In many samples, the effects of relatively high IRM and TOC apparently
diminished Rtot to <0.36; nevertheless, other compositional factors must have contributed to such low Rtot
(<0.36) in another six samples, which had relatively low IRM and TOC (Figure 13). Most samples having
relatively low IRM and TOC possessed higher Rtot values. The crudely positive association between IRM and
TOC is important with respect to particulate sources as amplified in Section 4.5.

Reflectance values showed no uniform correspondence with amounts of major elements except roughly for
relatively high Al at low Rtot (r2 = 0.40; Figure 14a). Aluminum amounts did not correspond with Rvis
(r2 = 0.11). Importantly, iron abundances did not influence Rtot (r2 = 0.07; Figure 14b) or Rvis (r2 = 0.00).

Values of Rtot corresponded with amounts of many trace elements. For example, high amounts of zinc corre-
sponded with low Rtot and with relatively high TOC wt. % and IRM (Figure 15) as was found for Cu, As, Be, Y,
Pb, and Nb. Regression fits of Zn were higher with IRM (r2 = 0.57) than with TOC% (r2 = 0.41). Overall,
reflectance values lacked systematic dependence by any PSD parameter.

Figure 8. Bar plots of ratios of average trace elemental abundances in dust‐
on‐snow (DOS; ALM matter) to respective Upper Continental Crust
averages (UCC; Rudnick & Gao, 2003). Samples with anomalously high
metal amounts were not used: Mo and Cu (106 and 215 ppm, respectively) in
the WY16 Hoosier Pass sample; U, Th, and Y (71, 3,353, and 136 ppm,
respectively) in the WY13 Grizzly Peak sample. Horizontal dashed line
represents identical elemental abundances in ALM matter and UCC.
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Figure 9. Box plots of trace‐element amounts by groups: left column, iron oxide groups; middle column, water years (WY); right column, locations.
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4.2. Influence of Collection Days on Physical and Chemical Properties

The timing of sample collection, counted by Julian days, influenced some properties. As examples, relatively late
collection days of the WY15 samples corresponded roughly with relatively low Rtot, high IRM, high TOC wt. %,
and with elevated trace elements as illustrated for Cu, Pb, Zn, Be, Ce, and Bi (Figures 16 and 17). These samples
primarily came from the goethite‐ and magnetite‐group samples as well as the WY15 and 16 samples. Similar
dependence on collection day was indicated by the amounts of Ba, Ni, Nb, Mo, Sb, Sr, Rb, U, Th, and Tl (not
shown).

4.3. Types and Occurrences of Light‐Absorbing Particles

4.3.1. Carbonaceous Matter

Carbonaceous matter comprised several types having different origins each of which likely suppressed Rtot. The
presence of BC as industrial/transportation pollutants is inferred by associations of TOC with metal (loids),
including As, Ba, Be, Cd, Cu, Nb, Pb, Sb, Y, and Zn. That is, many samples with relatively high TOC (>7 wt.%)
also possessed amounts of these trace elements greater than their average UCC amounts. In addition, pollen may
have contributed as brown carbon to diminished average total reflectance in some samples. Black tire‐wear
microplastic particles likely contributed to diminished reflectance but by unknown degrees (Reynolds
et al., 2024; Figure S1 in Supporting Information S1; see also Brahney et al., 2020; Evangeliou et al., 2020; Ming

Figure 10. Box plots of particle‐size parameters in vol. % and median size by iron oxide groups.
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& Wang, 2021; Revell et al., 2021). The different types of organic matter
occurred in each sample but in varying unquantified amounts; therefore, the
direct radiative forcing influences of the many forms of carbonaceous matter,
including BC, were not assessed. Recently, Gleason et al. (2022) showed the
importance of BC in promoting diminished albedo in mountain snow cover of
the American West, including the UCRB, from 2015 to 2018. A detailed
comparison of their results with ours is inadvisable because their BC de-
terminations were made on size splits of 0.09–0.6 μm after excluding dust
particles>20 μm from snow‐column‐integrated samples under approximately
maximal snow‐water equivalent conditions and not ALM layers.

4.3.2. Dark Rock Particles and Other Hosts for Magnetite

Dark rock and mineral particles are implicated as an influence on diminished
Rtot by the correspondence between Rtot and IRM. Because magnetite
abundance was very low (<0.38 wt. %), it cannot by itself account for Rtot
suppression. Instead, magnetite abundance is considered a proxy for dark rock
and mineral particles, which were ubiquitous but variably abundant.
Magnetite occurred within rock fragments having much greater surface area
than the magnetite in them (Figure S8 in Supporting Information S1), as in-
dividual rock‐derived magnetite grains commonly associated with ilmenite
and other titaniferous minerals and as particles from pollutant emissions, such
as fly ash. Anthropogenic, aggregated magnetite nanoparticles, not sought in
this study, may also have contributed to diminished Rtot (see Moteki
et al., 2017).

4.3.3. Ferric Oxide Minerals

Ferric oxide minerals of different sizes, origins, and occurrences were
observed in each sample, likely suppressing Rvis but systematically so over
time at only two sites—SASP and Wolf Creek Pass. These two southwestern‐

most sites are the closest ones to ferric oxide‐bearing (both hematite and goethite) dust‐source sediments of the
southern Colorado Plateau. Detailed spectral reflectance, magnetic property, Mössbauer data as well as stereo-
microscopic and SEM observations on six SASP samples (water years 2011–2016) were discussed by Reynolds
et al. (2020) and contribute to the following general statements. The most common occurrences of microcrys-
talline and nano‐size ferric oxide occurred in and on clay coats on quartz grains. Where examined, all iron‐bearing
clay coats contained discrete nano‐size ferric oxide minerals as found in other dusts and dust‐source sediments
(Moskowitz et al., 2016; Reynolds, Cattle, et al., 2014). Very fine‐grained ferric oxide minerals occurred within

Figure 11. Box plots showing average total (a) and visible (b) reflectance
values plotted by dominant iron oxide mineral.

Figure 12. Plots of average total reflectance against (a) isothermal remanent magnetization (IRM; r2 = 0.37) and (b) total
organic carbon (TOC wt. %; r2 = 0.47) by water years 2013–2016.
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and on the surfaces of oxidized typically orange‐to red‐colored rock particles.
Relatively coarse‐grained, specular hematite was present with magnetite
within rock fragments.

4.4. Causes of Variations in Spectral Reflectance

The interannual variations in Rtot values in ALM samples (Figure 2) are
attributed to variable amounts of different LAPs from different source regions
and types. Most ALM matter is ascribed to mineral dust from western North
American desert surfaces delivered by discrete windstorms to snow surfaces
resulting in individual dust layers during the period of snow accumulation
(http://www.codos.org/#codos; accessed 25 April 2024). The compositions of
these layers varied greatly in a study of 25 such layers (WY2011‐16) at SASP
(Reynolds et al., 2020). Nevertheless, the corresponding ALM layers there
possessed much less compositional variability among water years than did the
individual ALM layers produced by dust storms. The similar compositions of
those ALM samples, the most important dust layer affecting snow melt,
apparently represented an integration of variable compositions of individual
dust layers deposited during a given water year. Reasonably, the properties of
the ALM layers described here underwent similar compositional smoothing
of individual dust layers deposited annually at a site. Despite such suspected

compositional attenuation of individual dust layers, the compositions of ALM samples retained a signature,
revealed by the presence of a dominant iron oxide mineral, indicating annual dominance of some source regions
over others at each site.

Importantly, the lack of consistency among ALM Rtot and Rvis values is
ascribed to interannual variability in the sources for atmospheric PM
(Figure 3). In this respect, a control on ALM properties was the proportion of
dust from desert sources compared with background and fugitive sources.
Most dust from lithogenic sediment at desert sources consists of silicate
minerals. Such mineral dust can dilute the strong radiative forcing effects of
certain anthropogenic LAPs, such as BC generated by industrial and trans-
portation sectors (Reynolds et al., 2020). Evidence for these effects is found in
the unusual properties of the WY15 suite having the lowest Rtot as well as
highest amounts of magnetite, TOC, and most metals relative to those of the
WY13 and 14, especially, and many parameters measured for the WY16
suite. The dilution of LAPs was demonstrated in the SASP WY11‐16 ALM
record in which Rtot and Rvis correlated with ALM mass loading (Reynolds
et al., 2020). In that record, highest reflectance values were measured in high‐
mass ALM (50 g m− 2 mainly from two massive WY13 dust storms in April
(http://www.codos.org/#codos; accessed 25 April 2024). The lowest reflec-
tance values were measured in the WY15 ALM having relatively low
amounts of wind‐storm dust (5.6 g m− 2) and highest amounts of mass‐
normalized LAPs. Across the region in the current study, WY15 was simi-
larly characterized by few discrete dust layers. The ALM‐sample properties
of the current WY15 suite are similarly explained: WY15 ALM samples
contained high amounts of LAP‐bearing background fallout relative to ALM
samples for the other years that contained proportionately more dust from
regional dust storms.

The foregoing interpretation is strengthened by data showing that, for some
samples, their late Julian days of collection were associated with high
amounts of metals. That is, the final ALM layers at the time of collection
contained, besides mostly desert dust, added PM in amounts roughly
commensurate with the duration of ALM exposure at the surface. These
observations appear to be consistent with data from daily sampling and

Figure 13. Plot of total organic carbon (TOC wt. %) versus isothermal
remanent magnetization (IRM). Marker colors denote ranges in average total
reflectance (Rtot) that were defined based on mostly separated clusters of
Rtot values.

Figure 14. Plots of total reflectance against (a) aluminum wt. % (r2 = 0.40)
and (b) iron wt. % (r2 = 0.07).
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measurement of snow layers collected at SASP revealing increases in BC in surface snow and dust concentrations
after Julian day 120 during WY13 (Skiles & Painter, 2017). Two general sources might be responsible for the
added LAPs: (a) fugitive particulates and (or) undetected late‐season wind‐event dust fall directly onto the ALM
layer and (b) fugitive particulates scavenged from below by the ALM layer as it descended by melting into
remaining snowpack. Elevated metals in late‐collected snow may be largely attributable to anthropogenic
emissions.

4.5. Compositions of Light Absorbing Particles Bearing on Dust Sources

Recent studies of dust generated within the interior American West have recognized many dryland dust‐source
regions on the basis of ground observations, satellite retrievals, back trajectory and meteorological analyses as
well as some dust compositional attributes (Aarons et al., 2017; Axson et al., 2016; Carling et al., 2012, 2020;
Dhital et al., 2024; Goodman et al., 2019; Hahnenberger & Nicoll, 2012, 2014; Hand et al., 2012, 2016, 2017;
Heindel et al., 2020; Kandakji et al., 2020; Mangum et al., 2024; Miller et al., 2012; Munroe et al., 2019, 2023;
Neff et al., 2013; Phillips & Doesken, 2011; Reynolds, Goldstein, et al., 2014, 2016, 2020; Skiles et al., 2015).
Results herein provide additional compositional information to guide future recognition of desert source‐area
locations and behavior, including their interannual changes across the American West. More detailed knowl-
edge about source areas, types, conditions, and behaviors can be achieved when ALM compositions are compared
with candidate source‐sediment compositions and then reasonably well‐matched data are evaluated under
regional assessments of land cover‐land use (e.g., Duniway et al., 2019; Li et al., 2013; Mangum et al., 2024;
Munson et al., 2011; Nauman et al., 2018, 2023; Tyree et al., 2024), all supported by satellite retrievals and back
trajectory analysis (e.g., Axson et al., 2016; Munroe et al., 2023; Skiles et al., 2015). Compositional evidence also

Figure 15. Bivariate plots of (a) zinc versus total organic carbon (TOC wt. %, r2 = 0.41) and (b) zinc versus isothermal
remanent magnetization (IRM, r2 = 0.57). Marker colors denote ranges of average total reflectance (Rtot), from black,
indicating a range of lowest Rtot, to gray, a range of highest Rtot. Dashed line, average UCC value for zinc (67 ppm).

Figure 16. Julian days of sample collection by water years versus average total reflectance, total organic carbon (TOC wt. %), and isothermal remanent magnetization
(IRM) plotted as their means with standard deviations represented by error bars.
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points to many diffuse sources of anthropogenic dusts (see Reynolds et al., 2010, 2014a, 2020, 2024; Carling
et al., 2012; Dastrup et al., 2018; Goodman et al., 2019; Heindel et al., 2020; Munroe et al., 2019).

The three iron oxide‐mineral groups retained distinct mineralogic and chemical signatures, which signified
fundamental differences in source‐sediment mineralogy (Table 3, eg., Figure S9 in Supporting Information S1).
In addition, the particle‐size differences among the three iron oxide groups likely arose partly from different dust‐
transport distances, but they also apparently varied as functions of the textures of sedimentary bedrock, the
weathering of which produced most dust‐source sediments. For example, preliminary data indicate that dust‐
source sediments derived from marine mudstones in northwestern New Mexico contain goethite as the only
ferric oxide identified by reflectance spectroscopy.We thus surmise that the overall fine‐grained characteristics of
the goethite‐group samples derived at least partly from goethite‐bearing, clay‐rich Cretaceous sedimentary rocks
primarily south and southwest of the UCRB study region. Using spectral reflectance methods, determination of
the dominant iron oxide in surficial sediments at known or suspected dust sources might generate a mapped guide
to help discriminate among primary sources for individual dust layers and ALM layers.

The associations among certain metals and REE, IRM, and TOC indicate multiple origins for LAPs: sediments
derived from different bedrock types; emissions from fossil‐fuel combustion for stationary power generation,
emissions related to transportation involving tailpipe particulates, debris from tire, road, and vehicle wear, mining
activities (processing, smelting, reclamation, roads, and wastes), waste‐water treatment as well as deteriorated
metalliferous infrastructure and waste. Few of the measured trace elements, separately or combined, are unique to
their sources, making difficult precise attributions with the current data.

Roads and vehicles can be considered as related sources because together they can produce many recognized
forms of LAPs and their associated trace elements. Road‐tire wear produces micro and nanoplastic fragments
(Bank & Hansson, 2019; Evangeliou et al., 2020; Hao et al., 2001; Kole et al., 2017; Sommer et al., 2018;
Vogelsang et al., 2020; Wagner et al., 2018). These fragments consist of monomers and polymers homogeneously
permeated by nano‐size carbon black that imparts the black color to tires, thereby potentially promoting snowmelt
(Reynolds et al., 2024). Far‐distant, perhaps transoceanic, transport cannot be discounted for some microplastics
in UCRB snow (e.g., Bergmann et al., 2019; Evangeliou et al., 2020; Zhang et al., 2019) nor can remote sources of
microplastics from oceanic sea spray and bubble‐burst actions (Allen et al., 2020; Trainic et al., 2020). Particulate
emissions from motor vehicles associated with tailpipe emissions as well as brake and tire wear contain As, Ba,
Cd, Ce, Cu, Sb, Sr, Pb, Zn, Al, Ca, Fe, Mg, and K in addition to forms of organic and elemental carbon (e.g.,
Adachi & Tainosho, 2004; Arca Bati & Altun, 2020; Chen et al., 2023; Dietl et al., 1997; Goddard et al., 2019;
Grigoratos & Martini, 2015; Lough et al., 2005; Schauer et al., 2006). Barium, Ce, Nd, and La are fuel additives

Figure 17. Julian days of collection versus trace elements by iron oxide group, water year, and location as noted in legends.
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that may be incorporated into soot (e.g., Turley et al., 1973). The many
sources for magnetite include road wear of asphalt containing crushed
magnetite‐bearing rock and brake wear (Gonet et al., 2021; Gonet &
Maher, 2019; Moteki et al., 2017).

Particulate matter from stationary, power generating coal, and oil combustion
can be enriched in As, Ba, Be, Bi, Cd, Co, Cr, Cu, La, Mo, Mn, Ni, Pb, Rb, Sb,
Sc, Sr, Tl, Th, and Zn as well as major elements Ca and Fe, along with several
forms of organic matter, such as coal char and soot (Bragg et al., 1998;
EPA, 1996; Finkelman et al., 2002; Olmez & Gordon, 1985; Senior
et al., 2020). Zinc and Pb can be enriched in coal tars, a byproduct of coal
combustion used as pavement sealants among other applications that degrade
into fine PM (Van Metre et al., 2009).

Elements that may be linked to mining activities in the study area include Mo,
Cu, Pb, and Zn. Although the large interannual variations in LAP amounts
and most other constituents were not strongly expressed as geographic dif-
ferences, a notable exception was the 4‐year average of elevated Mo in East‐
sector samples. Within the East sector, deposits of Mo ore have been extracted
from three mines, one inactive open‐pit, and two active underground opera-
tions, with associated mine tailings, dirt roads, and ongoing reclamation. The
Mo ores occur in magnetite‐bearing rocks and are associated with Zn, Ce, La,
U, Th, Nb, Sc, and Y (Audétat, 2015; Desborough & Mihalik, 1980) for
which the averages of each were elevated in East‐sector sites.

The significantly higher sand contents in samples from the east sites,
compared with those in the other sectors, might be ascribed to a component of
local dust in the east sector and linked to some metals from mining activities.
The relation of high sand content with low ARM/IRM, overall and especially
in most east‐site samples, suggested the presence of relatively large magnetite
particles in relatively coarse dust and was thus consistent with a local dust
component (Figure S10 in Supporting Information S1). Elevated average Ce
and Zn amounts in the east‐site samples cloud the speculation about
transportation‐sector sources for these elements in these samples. Otherwise,
average Ce and Zn amounts considered by the three other location‐groups are
closely similar.

With respect to particle size, dust from Asia might be considered a source for
some amount of PM2.5 in the UCRB, in asmuch as Asian dust has been traced
to North America, especially to its west coast (Creamean et al., 2014; Fairlie
et al., 2007; Fischer et al., 2009; Husar et al., 2001; Kavouras et al., 2009;
VanCuren & Cahill, 2002; Zhao et al., 2008). Asian dust, however, is likely a
negligible component in the UCRB based on direct measurements and
modeling that links regional dust‐storm emissions and dynamics with depo-
sition of PM2.5 and PM10 (Achakulwisut et al., 2018; Hand et al., 2016, 2017;
Munroe et al., 2023; Neff et al., 2013; Reynolds et al., 2016, 2020; Skiles
et al., 2015).

4.6. Influence of Winter‐Spring Dust on Mountain Ecosystems

Atmospheric dust can deliver essential nutrients to mountain soils and water
bodies when ALM layers contact the surface (see Brahney et al., 2014;
Carling et al., 2012; Checketts et al., 2020; Dastrup et al., 2018; Goodman
et al., 2019; Heindel et al., 2020; Lawrence et al., 2010, 2013; Munroe
et al., 2014; Zhang, Goldstein, et al., 2018). Considering P, its abundance was
much higher in the magnetite‐group samples primarily in the WY15 and 16

Table 3
List of All‐Layers‐Merged (ALM) Sample Properties and Parameters
According to the Influence by Dominant Iron Oxide Group

Parameter Goethite Hematite Magnetite (n.d.)

Rtot = = Lowest

Rvis = = =

IRM Mid Lowest Highest

HIRM = = Lowest

ARM/IRM = = Lowest

TOC = = Highest

Al Mid Lowest Highest

Fe Mid Lowest Highest

K = = Highest

Na = = Highest

P = = Highest

Mg = = =

Ca = = =

Cu Mid Lowest Highest

Zn Mid Lowest Highest

Pb Mid Lowest Highest

Mo Mid Lowest Highest

As = = Highest

Ba Mid Lowest Highest

Bi Mid Lowest Highest

Ce Mid Lowest Highest

La Mid Lowest Highest

Cd Mid Lowest Highest

Co Mid Lowest Highest

Cr Mid Lowest Highest

Cs = Lowest =

Nb Mid Lowest Highest

Ni Mid Lowest Highest

Sc Mid Lowest Highest

Sb Mid Lowest Highest

Sr Mid Lowest Highest

Rb Mid Lowest Highest

U Mid Lowest Highest

Th Mid Lowest Highest

Tl Mid Lowest Highest

Mn = = Highest

Li = = Highest

Nd = = Highest

Ga Mid Lowest Highest

K/Rb Mid Highest Lowest

Median Finest Coarsest Mid

PM2.5 Finest = =
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samples, but it varied greatly within each geographic sector. Potassium
contents were similar to those of P in iron oxide and water‐year groups.

The sources and fates of Ca‐bearing minerals in ALM samples represent a
special case for their potential value as a dust proxy and roles in buffering acid
deposition. Amounts of Ca in these samples were far less than amounts in
individual dust‐on‐snow layers at SASP (WY11‐16) and the UCC average for
Ca (Figure S11 in Supporting Information S1). Moreover, Ca amounts tended
to decrease commensurately with later Julian days of collection (Figure S12
in Supporting Information S1). These results, and those of Clow and Inger-
soll (1994), Clow et al. (2016), and Reynolds et al. (2020) indicating that Ca
was depleted during its residence in snow cover, preclude the application of
Ca abundance as a derivative dust proxy in lake sediments when compared
with Ca in snow samples taken during the melt season (spring and early
summer) in the North American Mountain West (cf., Arcusa et al., 2019;
Routson et al., 2019). As with many other properties, P‐Ca relations differed
in the WY13‐14 samples compared with the WY15‐16 samples, the latter
group following a general trend of increased P with greater Ca (Figure S11 in
Supporting Information S1).

5. Implications, Uncertainties, and Questions
Results from this study, indicating that WY2013‐16 ALM average total reflectance values varied overall by a
factor of nearly two, imply a roughly similar range for contemporaneous interannual variations in late season
snow‐surface albedo (SSA) across the UCRB (Figure 3; Table S9 in Supporting Information S1). This variation
reflects differences in amounts and types of LAPs but no other important factors such as snow metamorphic
effects. Meaningful comparison among previous measurements of direct LAP radiative forcing, LAP optical
properties, derived SSA (Skiles et al., 2012, 2015, 2017, 2018; Jensen et al., 2024; Painter, Skiles, et al., 2012;
Skiles & Painter, 2017), and our reflectance measurements await in‐depth analyses. Nevertheless, the results
imply that LAP‐induced SSA of one or several ALM layers from 1 year would not capture the albedo effects of
atmospheric PM across the UCRB over several years, thereby underscoring the value of continued study of
UCRB‐ALM compositions and of radiative forcing monitoring across the UCRB (see Jensen et al., 2024).

Uncertainties associated with each of the LAP classes—carbonaceous matter, dark rock and mineral particles, and
ferric oxideminerals—leavemuch to be learned about the effects of BC andmineral dust onUCRB snowmelt. The
efficacy of snow‐radiation modeling would be enhanced by the following: (a) identification of the numerous types
of carbonaceous matter and quantification of their amounts, (b) systematic investigation of the radiative forcing
influences of dark rock particles from their natural and anthropogenic sources, and (c) improved measures of the
optical properties of the ferric oxideminerals (cf., Di Biagio et al., 2019, 2020;Go et al., 2021; Zhang et al., 2015) to
include their common nano‐size occurrences. With respect to snow radiative modeling, in addition, we note that
particle sizes (e.g., median sizes) in regional dust deposited to UCRB snow are much coarser than those considered
in prior modeling studies (e.g., Oaida et al., 2015; Skiles et al., 2017) that used a maximum particle size of 6 μm.

The results raise questions about the causes of variations in the amounts and compositions of LAPs in the ALM
samples. To what extent do the observed interannual variations in LAPs represent variability in dominant source‐
area contributions caused by changes in source‐area conditions, and to what extent do they indicate changes in
dust‐storm patterns and strengths? Do the compositional similarities of WY15 and 16 compared with WY13 and
14 samples represent a fundamental shift in regional source locations and behavior? This question may be
addressed by back trajectory analyses (not done here; see 2010–2013 examples in Skiles et al., 2015). Are some
microplastics delivered to the UCRB by transoceanic transport, considering the observations of microplastics on
arctic ice flows and in other polar settings (Aves et al., 2022; Bergmann et al., 2019)? What, in detail, are the
anthropogenic sources of many trace elements as indicated by their elevated amounts relative to their UCC
averages? Bundling some of these questions, what are the specific contributions of road‐tire‐wear particles to
radiative forcing of snow cover?With respect to dust in mountain ecosystems, what are the types, pedogenic fates,
and environmental effects of phosphorus, iron, calcium, and tire matter under different soil and hydrologic
settings (see Brahney et al., 2013, 2014; Scholz & Brahney, 2022; Zhang, Z. et al., 2018)? Do some LAPs undergo

Table 3
Continued

Parameter Goethite Hematite Magnetite (n.d.)

PM10 Finest Coarsest Mid

PM20‐10 Finest Coarsest Mid

PM63 Finest Mid Coarsest

Sand Finest Mid Coarsest

Note. The influences of the dominant iron oxide group ranked for highest,
lowest, and in‐between (Mid) values or amounts, or finest, coarsest, and in
between (Mid) for particle sizes. Equal markers denote approximately
equivalent effects, amounts, or texture. As examples, the magnetite‐group
samples generated overall lowest Rtot values, while possessing highest
IRM and TOC but lowest HIRM and K/Rb values, the latter of which
exemplified a mineralogic indicator for mica (Figure S9 in Supporting
Information S1).
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mineralogic and chemical changes during atmospheric transport even over the relatively short regional distances
of a few hundred km? Regarding the prediction of river flows, how important are the relative proportions of
different LAPs compared to the amount of dust and its exposure time, a question that could be addressed in
conjunction with the Colorado Basin River Forecast Center (https://www.cbrfc.noaa.gov/lmap/lmap.php;
accessed 15 October 2024)? These questions offer gateways to further research.

6. Conclusions
The LAP classes that diminished laboratory‐measured spectral reflectance as an indicator of radiative forcing
were different types of carbonaceous matter, dark rock and mineral particles as well as ferric oxide minerals. Each
class of LAP was found in each sample. Differences in LAP amounts and thus their relative radiative effects led to
differences in reflectance by water years, but quantitative attribution of a particular LAP component to diminished
reflectance was uncertain for any sample, group of samples or for the entire sample suite. The radiative forcing
effects of dark rock and mineral particles have been previously overlooked for their roles in structuring snow‐ and
ice‐surface albedo. With respect to global dust models, consideration of the radiative forcing effects of dark rock
and mineral particles might improve estimates of atmospheric responses to global dust loading. The many kinds
and sources of carbon included forms of black carbon, some types of which were inferred as soot from fossil‐fuel
combustion by the association of carbon with trace‐metal abundances exceeding their average amounts in the
upper continental crust. Particles generated by road‐tire wear constitutes another black carbonaceous component
that likely diminished spectral reflectance. More detailed characterization of all carbonaceous matter would lead
to better understanding of its radiative forcing effects. Ferric oxide minerals were also implicated for their
radiative forcing effects but to subordinate effect relative to those of carbonaceous and black rock and mineral
particles.

The results may help guide studies to identify desert sources for LAPs in UCRB snow. Dominant iron oxide
mineral, whether goethite or hematite as identified by spectral reflectance or magnetite determined by magnetic
properties, was a primary discriminator for ALM compositional and textural differences. Such differences are
interpreted to indicate proportionally different source‐area contributions, which varied primarily by water year.
The causes for such interannual differences are amenable to deeper examination with respect to dust‐storm
frequency and tracks. Future results on LAPs in post‐WY2016 snow samples, combined with the WY2013‐16
data, would enable evaluation of compositional influences by climatic factors, such as ENSO and PDO, to the
extent that such factors partly control dust activity (Hand et al., 2017).

Identification of dust‐source areas is a practical matter. At this point, different UCRB ALM‐snow compositions
are insufficiently diagnostic of specific desert‐source locations as point sources on the order of a few km2. When
such diagnoses are achieved, recurrently active sources may be considered for mitigation to confer downwind
benefits to water‐resource management and human health. Dust from widespread anthropogenic sources com-
plicates the goals of geographic source attribution, so that the issues of such fugitive dust confound prospects for
short‐term mitigation.

In addition to the potential value of linking properties of ALM samples to water‐resource management, future
examination of these properties would provide valuable information about several other issues. The ecological
effects from early snowmelt (Steltzer et al., 2009) and ensuing pulses of potential nutrients, acid buffers, minerals,
metals, microplastics, and tire matter to soil, streams, and lakes when the ALM layer contacts the ground surface
await detailed study in sensitive areas. In particular, the toxic effects of tire matter on mountain organisms are
largely unknown (see Greer et al., 2023; Tian et al., 2021). Dust properties may also be evaluated as nuclei for
cloud condensation and ice formation (Zimmermann et al., 2008). Moreover, interannual changes in the prop-
erties of ALM samples may reveal ongoing changes in landscape conditions in dry and drying western North
America. Finally, the particle‐size distributions of ALM samples may capture the levels and trends of regional air
pollution during winter and most of springtime. These assessments might aid estimation and prediction of po-
tential health effects of dust among communities in and astride the Colorado Rocky Mountains (e.g., Acha-
kulwisut et al., 2018, 2019; Crooks et al., 2016; Ghio et al., 2014; Neff et al., 2013; Reynolds et al., 2016; Zhang
et al., 2016).

A general explanation for variable compositions of the ALM samples is that strong, regional winds swept up
loose, fine‐grained matter from diverse landscapes over large areas of western United States. The land‐surface
sources were both natural and disturbed. Direct emissions of atmospheric PM from anthropogenic activities
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were also involved. With snowpack melting, the ALM layers mixed all individual wind‐blown dust and non‐
windstorm‐related background PM, thereby integrating compositions from multiple sources during winter‐
early spring. Most ALM mass comes from deserts, providing many LAPs, based on direct observations, satel-
lite retrievals, mineralogy, chemical and physical composition, and modeling. Nevertheless, a measurable pro-
portion of radiative forcing driving snow melt is attributed to many anthropogenic sources.

Conflict of Interest
The authors declare no conflicts of interest relevant to this study.

Data Availability Statement
Data, observations, and metadata supporting the conclusions can be obtained in Supporting Information and in the
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